A Sylvester equation approach for the computation of zero-group-velocity points in waveguides

Zero-group-velocity points in a fluid-filled pipe.

Abstract

Eigenvalues of parameter-dependent quadratic eigenvalue problems form eigencurves. The critical points on these curves, where the derivative vanishes, are of practical interest. A particular example is found in the dispersion curves of elastic waveguides, where such points are called zero-group-velocity (ZGV) points. Recently, it was revealed that the problem of computing ZGV points can be modeled as a multiparameter eigenvalue problem (MEP), and several numerical methods were devised. Due to their complexity, these methods are feasible only for problems involving small matrices. In this paper, we improve the efficiency of these methods by exploiting the link to the Sylvester equation. This approach enables the computation of ZGV points for problems with much larger matrices, such as multi-layered plates and three-dimensional structures of complex cross-sections.

Publication
Computational Mechanics
Daniel A. Kiefer
Daniel A. Kiefer
Researcher at Institut Langevin

Research in guided elastodynamic waves, fluid-structure interaction, simulation and signal processing for ultrasonic sensors and nondestructive testing.