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where L0, L1, L2, M are real n × n matrices, which are 
usually obtained by a (semi-)discretization of a boundary 
value problem. The solutions (k, ω) form eigencurves ω(k), 
and we are interested in locating the critical points on these 
curves, where ω′(k) = ∂ω

∂k = 0. Although solutions of (1) 
can be complex, we consider the important case where ω 
and k are both real.

This work is motivated by the study of (anisotropic) elas-
tic waveguides (see, e.g., [24, 37]), where ω denotes the 
angular frequency and k the wavenumber. In this context, 
the eigencurves are referred to as dispersion curves. The 
slope cg = ω′ is called group velocity, which is of practical 
relevance, as it describes the propagation of energy. Points 
(k∗, ω∗) on the dispersion curves where the group veloc-
ity vanishes are called zero-group-velocity (ZGV) points. 
Often, the term is used exclusively for solutions at finite 
wavenumber  k∗, while those at k∗ = 0 are traditionally 
denoted as thickness resonances or cut-off frequencies [31] 
but both cases lead to resonance phenomena. In the follow-
ing, we use the designation “ZGV” for solutions at any k∗. 
In the light of this motivating practical application, we will 
generally refer to points on the curves formed by eigenval-
ues of parameter-dependent eigenvalue problems that sat-
isfy ω′(k) = 0 as ZGV points, irrespective of their physical 
interpretation.

1  Introduction

In many physics and engineering applications, we encounter 
parameter-dependent quadratic eigenvalue problems (QEP) 
of the form

W (k, ω)u :=
(
(ik)2L2 + ikL1 + L0 + ω2M

)
u = 0,� (1)
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Eigenvalues of parameter-dependent quadratic eigenvalue problems form eigencurves. The critical points on these curves, 
where the derivative vanishes, are of practical interest. A particular example is found in the dispersion curves of elastic 
waveguides, where such points are called zero-group-velocity (ZGV) points. Recently, it was revealed that the problem 
of computing ZGV points can be modeled as a multiparameter eigenvalue problem (MEP), and several numerical meth-
ods were devised. Due to their complexity, these methods are feasible only for problems involving small matrices. In 
this paper, we improve the efficiency of these methods by exploiting the link to the Sylvester equation. This approach 
enables the computation of ZGV points for problems with much larger matrices, such as multi-layered plates and three-
dimensional structures of complex cross-sections.
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Recently, a numerical algorithm for the computation of 
ZGV points in anisotropic elastic waveguides was intro-
duced [24] that can be applied to a general problem of the 
form (1). The method is based on a generalization of the 
method of fixed relative distance (MFRD) from [19], which 
provides good initial approximations that can be refined 
by a locally convergent Newton-type method. Inspired by 
the Sylvester-Arnoldi method from [29], we show in this 
contribution that sophisticated tools from linear algebra 
substantially speed up the algorithm and reduce its mem-
ory requirements. This enables us to solve problems with 
larger matrices and tackle more complex problems, such as 
multi-layered plates as well as waveguides of arbitrary two-
dimensional cross-sections.

In the following, we first discuss properties of ZGV 
points in Sect. 2. In Sect. 3, we introduce several tools we 
will use in the following section; the presentation is inter-
twined with their application to the computation of ZGV 
points: the Sylvester equation, multiparameter eigenvalue 
problems, and the MFRD. Our main contributions are 
included in Sect. 4, where we show how we can exploit the 
structure of the Sylvester equation to apply the MFRD more 
efficiently and in Sect. 5, where we present a scanning algo-
rithm for the computation of ZGV points that combines the 
MFRD and a locally convergent Gauss–Newton method. In 
Sect. 6, we introduce a waveguide model that is used in the 
numerical experiments in the following section, where we 
demonstrate the strength of the proposed method. Finally, 
we discuss possible generalizations and give a conclusion 
in Sects. 8 and 9.

2  Theory on ZGV points

If we assume that u = u(k) and ω = ω(k) are differentia-
ble, then, by differentiating (1), we obtain

(−2kL2 + iL1 + 2ω(k)ω′(k)M)u(k) + W (k, ω(k))u′(k) = 0,

where, in general, •′ = ∂•
∂k . If (k∗, ω∗) is a ZGV point, then 

ω′(k∗) = 0, and it follows that

(−2k∗L2 + iL1)u∗ + W (k∗, ω∗)v∗ = 0,� (2)

where u∗ = u(k∗) and v∗ = u′(k∗). Let z∗ be the cor-
responding left eigenvector of (1) at (k∗, ω∗), i.e., 
zH

∗ W (k∗, ω∗) = 0. By multiplying (2) by zH
∗  from the left, 

we get the following necessary condition for a ZGV point:

zH
∗ (−2k∗L2 + iL1)u∗ = zH

∗ W ′(k∗, ω∗)u∗ = 0.� (3)

Lemma 2.1  If (k∗, ω∗) is a ZGV point of the parameter-
dependent QEP (1), then k∗ is a multiple eigenvalue of the 
QEP

Q(k)u :=
(
(ik)2L2 + ikL1 + L0 + ω2

∗M
)
u = 0� (4)

that we get by fixing ω in (1) to ω∗.

Proof  If z and u are the left and right eigenvectors of a 
simple eigenvalue k of the QEP Q(k)u = 0, then it is well-
known that zHQ′(k)u ̸= 0, see, e.g., [33, Prop. 1] or [1, 
Thm. 3.2]. But, since (3) holds at a ZGV point, it thus fol-
lows that k∗ is a multiple eigenvalue of (4). � □

Lemma 2.1 gives a necessary condition, but not every point 
(k∗, ω∗) such that k∗ is a multiple eigenvalue of (4) for a 
fixed ω = ω∗, corresponds to a ZGV point. In addition, (2) 
must hold as well, and this means that v∗ is a root vector of 
height two.1 This is possible only if the algebraic multiplic-
ity ma of k∗ as an eigenvalue of (4) is strictly greater than 
the geometric multiplicity mg = dim(Ker(Q(k∗))). Also, 
to make sure that ω(k) is analytic in a neighborhood of k∗, 
we require that ω∗ is a simple eigenvalue of W (k∗, ω), i.e., 
the generalized eigenvalue problem (GEP) that we get by 
fixing k to k∗ in (1). Note that in some cases, it is possible to 
extend the dispersion curves so that they remain analytical 
also in points where the curves cross and multiple eigen-
values appear, see, e.g., [28]. To keep things concise, we 
will keep the requirement that ω∗ is a simple eigenvalue of 
W (k∗, ω) and thus exclude points from candidates for ZGV 
points where two or more dispersion curves cross.

Example 2.2  We take

L2 =

[2 1 0
1 1 0
0 0 1

]
, L1 =

[ 0 3 0
−3 0 0
0 0 0

]
,

L0 =

[−1.75 1 0
1 −1.75 0
0 0 −0.25

]
, M =

[3 1 0
1 4 0
0 0 3.5

]
.

We selected the matrices so that L0 is symmetric, L1 is 
skew-symmetric, and L2, M  are symmetric positive defi-
nite. This way, the matrices have the same properties as the 
larger matrices in [24], where ZGV points of Lamb waves 
in an austenitic steel plate are computed.

The corresponding eigenvalue problem (1) has five 
real ZGV points (0, 0.2673), (0, 0.4074), (0, 1.0628), and 
(±1.0642, 0.2393), such that ω > 0, which are shown 

1  An eigenvalue λ∗ of a quadratic matrix polynomial Q(λ) is defec-
tive if and only if there exist an eigenvector (a root vector of height 
one) v ̸= 0 and a root vector of height two w such that Q(λ∗)v = 0 
and Q(λ∗)w + Q′(λ∗)v = 0, see, e.g., [12, Sect. 2.2].
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together with the real dispersion curves in Fig. 1. We consider 
only the solutions with ω > 0 since each dispersion curve 
ω(k) has its counterpart −ω(k), and the same holds for the 
ZGV points. Note that the points (±0.4236, 0.3503), where 
the dispersion curves cross, are not ZGV points, although 
k∗ = ±0.4236 is a double eigenvalue of (4) for a fixed 
w∗ = 0.3503.

Due to the structure of the matrices, the dispersion curves 
are also symmetric with respect to the ω-axis, and there 
exist trivial ZGV points at k = 0, which can be computed 
from the GEP (L0 + ω2M)u = 0. Nontrivial ZGV points 
come in pairs (±k∗, ω∗), and we are interested in solutions 
where k∗ > 0.

3  Auxiliary results

In this section, we introduce some related results and 
numerical methods that we will use in the following sec-
tions to construct an efficient numerical method for finding 
the ZGV points of (1).

3.1  Sylvester equation

The Kronecker product A ⊗ B of matrices A ∈ Cn×m and 
B ∈ Cp×q is a matrix of size np × mq of the block form

A ⊗ B =




a11B · · · a1mB
...

...
an1B · · · anmB


 .

For a matrix X ∈ Cm×n, vec(X) ∈ Cmn is a vectorization 
of matrix X , i.e, the vector obtained by stacking all columns 
of X  on top of each other. Our results are based on the well-
known equality (see, e.g., [16, Lem. 4.3.1]):

vec(AXB) = (BT ⊗ A) vec(X),� (5)

which holds for A ∈ Cm×m, B ∈ Cn×n, and X ∈ Cm×n. 
Suppose that we are looking for a matrix X ∈ Cm×n that 
satisfies the Sylvester equation

AX + XB = C� (6)

for given matrices A ∈ Cm×m, B ∈ Cn×n, and C ∈ Cm×n. 
It follows from (5) that (6) is equivalent to

(In ⊗ A + BT ⊗ Im)vec(X) = vec(C).� (7)

The Sylvester equation is therefore uniquely solvable when 
In ⊗ A + BT ⊗ Im is nonsingular, which is true if and only 
if λ + µ ̸= 0 for all possible pairs (λ, µ), where λ is an 
eigenvalue of A, and µ is an eigenvalue of B, see, e.g., [16, 
Thm. 4.4.6]. We could apply (7) to numerically solve (6), 
but this is not efficient since it, in general, leads to complex-
ity O(m3n3) due to a matrix of size mn × mn in (7).

There exist more efficient numerical methods for the Syl-
vester equation, for instance, the Bartels-Stewart algorithm 
[3], which is appropriate in our setting, where we have to 
solve many Sylvester equations with the same matrices 
A, B and different right-hand sides C. In the Bartels-Stew-
art algorithm, we first compute two Schur decompositions

A = URUH, B = V SV H,

where matrices U, V  are unitary, and matrices R, S are 
upper triangular. Applying the above Schur decompositions 
to (6), we obtain a new Sylvester equation with upper trian-
gular matrices

RY + Y S = D,� (8)

where D = UHCV  and Y = UHXV . The columns of 
Y = [y1 · · · yn] can now be computed from left to right 
as solutions of upper triangular linear systems

(R + siiI)yi = di −
i−1∑
k=1

skiyk, i = 1, . . . , n,

and then X = UY V H. If the Sylvester equation is nons-
ingular, then R + siiI  is nonsingular for all i = 1, . . . , n. 
With the above approach, we can efficiently solve the Syl-
vester equation (6) in complexity O(m3 + n3), which is 
much less than O(m3n3), the complexity of solving (7) as 
a large linear system.

3.2  Multiparameter eigenvalue problems

A d-parameter eigenvalue problem has the form
Fig. 1  Real dispersion curves ω(k) and ZGV points of Example 2.2
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∆̂i = Q∗∆iZ for i = 0, . . . , d such that ∆̂0 is nonsingular, 
matrices ∆̂−1

0 ∆̂i, i = 1, . . . , d, commute, and their joint 
eigenvalues are the eigenvalues of (9).

The above approach for singular problems is used in 
[24], where it is shown that ZGV points of (1) correspond 
to the eigenvalues of a singular three-parameter eigenvalue 
problem (3EP)

(ηC2 + λC1 + C0)w = 0
(ηL2 + λL1 + L0 + µM)u = 0
(ηL̃2 + λL̃1 + L̃0 + µM̃)v = 0,

� (13)

where λ = ik, µ = ω2, η = (ik)2,

L̃2 =
[
L2 0
0 L2

]
, L̃1 =

[
L1 0
2L2 L1

]
, L̃0 =

[
L0 0
L1 L0

]
, M̃ =

[
M 0
0 M

]
,

and

C2 =
[
1 0
0 0

]
, C1 =

[
0 −1

−1 0

]
, C0 =

[
0 0
0 1

]
.� (14)

Note that the matrices (14) incorporate the relation between 
λ and η since det(ηC2 + λC1 + C0) = η − λ2. This gives 
the first known numerical method that can compute all ZGV 
points without any initial approximations. However, since 
we first have to explicitly compute the corresponding ∆ 
matrices of size 4n2 × 4n2 and then use expensive numeri-
cal methods for singular problems, this approach is feasible 
only for problems (1) with small matrices.

Let us remark that solvers for MEPs are not included in 
standard numerical packages for problems in linear algebra, 
but several numerical methods, also for singular problems, 
are implemented in the Matlab toolbox MultiParEig [35].

3.3  Method of fixed relative distance

Instead of solving (13), which gives exact solutions, we can 
solve a simpler regular 3EP that returns approximations of 
candidates for ZGV points. From each individual candidate, 
we can then compute the exact ZGV point by applying the 
locally convergent Gauss–Newton method that we provide 
in Sect. 5.1. This approach, presented first in [24] for Her-
mitian problems, is based on Lemma 2.1 and the method of 
fixed relative distance (MFRD) from [19].

We know from Lemma 2.1 that at ω∗ corresponding to 
a ZGV point, the QEP in the variable λ = ik with fixed 
µ∗ = ω2

∗, i.e.,
(
λ2L2 + λL1 + L0 + µ∗M

)
u = 0,� (15)

A10x1 = λ1A11x1 + · · · + λdA1dx1

...
Ad0xd = λ1Ad1xd + · · · + λdAddxd,

� (9)

where Aij  is an ni × ni complex matrix, and xi ̸= 0 are vec-
tors for i = 1, . . . , d. If (9) holds, then (λ1, . . . , λd) ∈ Cd 
is an eigenvalue, and x1 ⊗ · · · ⊗ xd is the corresponding 
eigenvector. A generic multiparameter eigenvalue problem 
(MEP) (9) has N = n1 · · · nd eigenvalues, which are roots 
of a system of d multivariate characteristic polynomials

pi(λ1, . . . , λd) := det(Ai0 − λ1Ai1

− · · · − λdAid) = 0, i = 1, . . . , d.
� (10)

The problem (9) is related to a system of GEPs

∆1z = λ1∆0z, . . . , ∆dz = λd∆0z,� (11)

where z = x1 ⊗ · · · ⊗ xd, and the N × N  matrices

∆0 =

∣∣∣∣∣∣

A11 · · · A1d
...

...
Ad1 · · · Add

∣∣∣∣∣∣
⊗

:=
∑

σ∈Sd

sgn(σ) A1σ1 ⊗ A2σ2 ⊗ · · · ⊗ Adσd

� (12)

∆i =

∣∣∣∣∣∣

A11 · · · A1,i−1 A10 A1,i+1 · · · A1d
...

...
...

...
...

Ad1 · · · Ad,i−1 Ad0 Ad,i+1 · · · Add

∣∣∣∣∣∣
⊗

, i = 1, . . . , d,

where the Kronecker product is used instead of the standard 
multiplication, are called operator determinants. For details 
see, e.g., [2]. If ∆0 is nonsingular, then we say that (9) is reg-
ular. In such cases, the matrices Γi := ∆−1

0 ∆i, i = 1, . . . , d, 
commute, and the eigenvalues of (9) are the joint eigenval-
ues of commuting matrices Γ1, . . . , Γd. Hence, if N  is not 
too large, a standard numerical approach to computing the 
eigenvalues of (9) is to explicitly compute Γ1, . . . , Γd and 
then solve a joint eigenvalue problem. Alternatively, if we 
prefer not to multiply by ∆−1

0 , we may solve a joint system 
of GEPs (11), see, e.g., [15].

If all linear combinations of matrices ∆0, ∆1, . . . , ∆d are 
singular, then (9) is a singular MEP, which is much more 
difficult to solve. In such case, it is still possible that the 
polynomial system (10) has finitely many roots that are the 
eigenvalues of (9). Then, (11) is a joint system of d singular 
matrix pencils whose regular eigenvalues are the solutions 
of (9). For more details, see, e.g., [25]. To solve a singular 
MEP numerically, we can apply a generalized staircase-
type algorithm [32], which returns matrices Q and Z with 
orthonormal columns that yield projected smaller matrices 
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µ = zH∆M z

zH∆0 z
.� (23)

Even for small values of n, computing all eigenvalues of 
(19) is very demanding. Instead, we can apply a subspace 
iterative method (for instance, eigs in Matlab) to find eigen-
values of (19) close to a target ik0. We can apply this several 
times using different targets k0 and, thus, scan an inter-
val [ka, kb] for ZGV points (k∗, ω∗); for more details, see 
Sect. 5 and [24]. In the next section, we will show how we 
can exploit the structure of the matrices (18) and (20) to 
find eigenvalues of (19) close to a target ik0 much more 
efficiently. This improvement enables the computation of 
ZGV points for much larger matrices than in the original 
algorithm from [24].    

We remark that it is not possible to apply a similar 
approach with a subspace iteration to the 3EP (13) because 
this problem is singular.

4  Exploiting the structure

When employing a subspace iterative method such as 
the Krylov-Schur method [38] or the implicitly restarted 
Arnoldi method [26] for the solution of the GEP (19), the 
computational bottleneck in each step is the solution of a 
linear system of the form

(∆1 − σ∆0)z = ∆0y,� (24)

where we assume that the shift σ is not an eigenvalue of 
(19), i.e., the matrix ∆1 − σ∆0 is nonsingular. Even for 
sparse matrices L0, L1, L2, M , which we obtain using, e.g., 
the finite element method, this makes the computation slow 
already for modest matrix size n. By exploiting the structure 
of the matrices ∆0 and ∆1 in a similar way as in [29], we 
can solve the linear system (24) much more efficiently.

First, we note the block structure

∆0 =
[
G1 G2
G2 0

]
, ∆1 =

[
−G0 0

0 G2

]
,� (25)

where

G0 = L0 ⊗ M − M ⊗ L0,

G1 = L1 ⊗ M − (1 + δ)M ⊗ L1,

G2 = L2 ⊗ M − (1 + δ)2M ⊗ L2.

� (26)

Introducing the block notation z =
[
z1
z2

]
 and y =

[
y1
y2

]
, we 

can rewrite (24) as

has a multiple (generically double) eigenvalue  λ∗ = ik∗. 
Therefore, for certain µ̃ ̸= µ∗ but close to µ∗, the QEP
(
λ2L2 + λL1 + L0 + µ̃M

)
u = 0� (16)

has at least two different solutions close to λ∗. The MFRD, 
adapted to (15) in [24], introduces the 3EP

(ηC2 + λC1 + C0)w = 0
(ηL2 + λL1 + L0 + µM)u = 0(

η(1 + δ)2L2 + λ(1 + δ)L1 + L0 + µM
)

v = 0
� (17)

in µ = ω2, λ = ik, η = λ2, and C0, C1, C2 as in (14). 
Therein, δ > 0 specifies the relative distance between the 
sought λ and serves as a regularization parameter. The 3EP 
(17) has an eigenvalue (λ̃, µ̃, η̃), where 

(√
µ̃, −iλ̃

)
 is close 

to a ZGV point, such that λ̃ and λ̃(1 + δ) are eigenvalues of 
the initial problem (16).    

Solutions of (17) can be obtained from a transformation 
into the corresponding system of GEPs (11). The problem 
(17) is regular since the corresponding 2n2 × 2n2 matrix

∆0 =

∣∣∣∣∣
C2 C1 0
L2 L1 M

(1 + δ)2L2 (1 + δ)L1 M

∣∣∣∣∣
⊗

� (18)

is nonsingular for δ > 0. Hence, we can solve the GEP 
given by

∆1z = λ∆0z,� (19)

where

∆1 = (−1)

∣∣∣∣∣
C2 C0 0
L2 L0 M

(1 + δ)2L2 L0 M

∣∣∣∣∣
⊗

,� (20)

by a standard numerical method for GEPs. In the ensuing, 
the obtained eigenvector z is used in the GEP associated 
with µ, namely,

∆M z = µ∆0z,� (21)

with ∆0 defined before and

∆M = (−1)

∣∣∣∣∣
C2 C1 C0
L2 L1 L0

(1 + δ)2L2 (1 + δ)L1 L0

∣∣∣∣∣
⊗

,� (22)

to obtain µ from the Rayleigh quotient

1 3
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∆M =
[
G3 G4
G4 G5

]

with

G3 = −L1 ⊗ L0 + (1 + δ)L0 ⊗ L1,

G4 = (1 + δ)2L0 ⊗ L2 − L2 ⊗ L0,

G5 = −(1 + δ)L2 ⊗ L1 + (1 + δ)2L1 ⊗ L2.

To obtain (23), we compute matrices

T1 = −L0Z1LT
1 + (1 + δ)L1Z1LT

0 + (1 + δ)2L2Z2LT
0 − L0Z2LT

2 ,

T2 = (1 + δ)2L2Z1LT
0 − L0Z1LT

2 − (1 + δ)L1Z2LT
2 + (1 + δ)2L2Z2LT

1 ,

T3 = MZ1LT
1 − (1 + δ)L1Z1MT + MZ2LT

2 − (1 + δ)2L2Z2MT,

T4 = MZ1LT
2 − (1 + δ)2L2Z1MT

and compute µ as

µ = zH
1 t1 + zH

2 t2

zH
1 t3 + zH

2 t4
,� (33)

where ti = vec(Ti) for i = 1, . . . , 4. As this computation 
involves only multiplications by n × n matrices, its com-
plexity is O(n3).

5  Algorithm

For large problems, we suggest applying the MFRD to pro-
vide good initial approximations, which we subsequently 
refine using the local convergent method presented next.

5.1  Gauss–Newton method

If we introduce λ = ik and µ = ω2 similarly to (15), then 
we know from Sect. 2 that for a ZGV point of (1), we have 
to find λ, µ ∈ C and u, z ∈ Cn such that

(λ2L2 + λL1 + L0 + µM)u = 0
zH(λ2L2 + λL1 + L0 + µM) = 0

zH(2λL2 + L1)u = 0
(uHu − 1)/2 = 0
(zHz − 1)/2 = 0.

� (34)

The number of equations exceeds the number of unknowns 
by one in (34); hence, this is an overdetermined nonlinear 
system. However, it is a zero-residual system because if 
(k, ω) is a ZGV point, and u and z are the corresponding 
right and left eigenvectors, then all equations in (34) are 
satisfied.

[
−G0 − σG1 −σG2

−σG2 G2

] [
z1
z2

]
=

[
G1y1 + G2y2

G2y1

]
.� (27)

If we add the second block row, multiplied by σ, to the 
first block row, we get an equivalent lower block triangular 
system
[
−G0 − σG1 − σ2G2 0

−σG2 G2

] [
z1
z2

]
=

[
(G1 + σG2)y1 + G2y2

G2y1

]
.� (28)

Hence, we can compute z1 using the first block row

(G0 + σG1 + σ2G2)z1 = −(G1 + σG2)y1 − G2y2,� (29)

and it follows from the second equation and the nonsingu-
larity of G2 that z2 = y1 + σz1.

To solve (29) efficiently, we transform it into a Sylves-
ter equation using the equalities from Subsection 3.1. First, 
let w := −(G1 + σG2)y1 − G2y2. If y1 = vec(Y1) and 
y2 = vec(Y2), then it follows from (26) that the right-hand 
side of (29) is w = vec(W ), where

W = MY1(L1 + σL2)T

− ((1 + δ)L1 + (1 + δ)2L2)Y1MT

− MY2L2 + (1 + δ)2L2Y2MT.

In a similar way, we get from (26) that

G0 + σG1 + σ2G2 = L(0) ⊗ M − M ⊗ L(δ),� (30)

where L(δ) := L0 + (1 + δ)σL1 + (1 + δ)2σ2L2. Thus, 
(29) is equivalent to

MZ1L(0)T − L(δ)Z1MT = W,� (31)

where z1 = vec(Z1). Since M is nonsingular, we can write 
the above as a Sylvester equation

Z1L(0)TM−T − M−1L(δ)Z1 = W̃ ,� (32)

where W̃ = M−1WM−T = Y1(L1 + σL2)TM−T−
M−1((1 + δ)L1 + (1 + δ)2L2)1 − Y2L2M−T + M−1

Y (1 + δ)2L2Y2. As we can solve the above Sylvester equa-
tion in complexity O(n3), this is also the complexity of 
solving (24). Note that it follows from (28) and (30) that 
nonsingularity of ∆1 − σ∆0 implies the nonsingularity of 
the Sylvester equation (32).

Let us remark that we can exploit the structure of ∆0 
and ∆M  to compute µ in (23) in complexity O(n3) as well. 
Namely, we have
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convergence. If the method has converged to a zero-residual 
solution, then we can verify if a computed point is a ZGV 
point by checking if ω∗ is indeed a simple eigenvalue of 
W (k∗, ω).

We also remark that for a special case when W (k, ω) 
is Hermitian for real values k, the left eigenvector corre-
sponding to a right eigenvector u is uH, which happens, for 
example, in the case when the matrices Li are alternately 
symmetric/anti-symmetric and M  is symmetric positive 
definite. For such problems, we can use a more efficient 
Newton’s method, see [24, Sec. IV].

5.2  Scanning method

The following algorithm uses the MFRD from Sect.  3.3 
to scan a wavenumber interval [ka, kb] and compute ZGV 
points (k∗, ω∗) such that k ∈ [ka, kb]. The matrices ∆0, ∆1 
and ∆M  refer to (18), (20) and (22), respectively, but we do 
not have to compute them explicitly.
Algorithm 1  Scanning method for ZGV points
Input: n × n matrices L2, L1, L0, M , interval [ka, kb], default step size ∆k
Output: ZGV points (k∗, ω∗)

In the following, we provide additional details about 
Algorithm 1.

	● In line 3, we can apply any subspace method, for in-
stance eigs in Matlab. Thereby, it is important that we 
do not generate the matrices ∆0 and ∆1 explicitly. In-
ternally, the eigs function iteratively solves the linear 
system (∆1 − σ∆0)z = ∆0y, and it is possible to pro-
vide a pointer to a custom implementation thereof. We 
do so, thereby exploiting the relation with the Sylvester 
equation from Sect. 4. If the shift σ is too close to an 
eigenvalue of (19), which is very unlikely to happen in 
practice, then the subspace method will fail because the 
linear system with the matrix ∆1 − σ∆0 is singular or 
too ill-conditioned. A simple remedy is to modify the 
shift σ.

	● Alternatively, if n is small enough, we can compute all 
eigenvalues of ∆1z = λ∆0z. This approach gives all 
ZGV points in just one run; hence, the scanning is not 
needed, and it could be more efficient than solving the 
related singular 3EP (13).

	● In line 5, we compute µ using (33), which avoids gen-
erating ∆0 and ∆M . Note that this expression might 
not return correct µ if λ is a multiple eigenvalue of 

For solving (34) from a good initial approximation, we 
apply the Gauss–Newton method [5, 34]. To overcome the 
obstacle that the third equation in (34) is not complex differ-
entiable in z, we define y = z, where • denotes the complex 
conjugate, and rewrite (34) as

F (u, y, λ, µ) :=




(λ2L2 + λL1 + L0 + µM)u
(λ2L2 + λL1 + L0 + µM)Ty

yT(2λL2 + L1)u
(uHu − 1)/2
(yHy − 1)/2


 = 0.� (35)

Suppose that (uk, yk, λk, µk) is an approximation to 
the solution of (35). If F (u, y, λ, µ) = 0 then also 
F (αu, βy, λ, µ) = 0 for arbitrary α, β ∈ C such that 
|α| = |β| = 1. Because of that, the vectors u and y are not 
uniquely defined, and although the last two equations in (35) 
are not complex differentiable, as explained in [27], we can 
obtain a correction (∆uk, ∆yk, ∆λk, ∆µk) for the update

(uk+1, yk+1, λk+1, µk+1) = (uk, yk, λk, µk) + (∆uk, ∆yk, ∆λk, ∆µk)

as a solution of the (2n + 3) × (2n + 2) least squares 
problem

JF (uk, yk, λk, µk)∆sk = −F (uk, yk, λk, µk),

where ∆sk =
[
∆uT

k ∆yT
k ∆λk ∆µk

]T, and the Jaco-
bian JF (uk, yk, λk, µk) is



λ2
kL2 + λkL1 + L0 + µkM 0 (2λkL2 + L1)uk Muk

0 (λ2
kL2 + λkL1 + L0 + µkM)T (2λkL2 + L1)Tyk MTyk

yT
k (2λkL2 + L1) uT

k (2λkL2 + L1)T 2yT
k L2uk 0

uH 0 0 0
0 yH 0 0


 .� (36)

Besides an initial approximation (k0, ω0) for the ZGV point, 
the method requires initial approximations for the right and 
left eigenvectors as well. If we do not have them, then usu-
ally a good choice is to use a random vector from the space 
spanned by the right and left singular vectors that belong to 
a few of the smallest singular values of W (k0, ω0).

The Gauss–Newton method converges locally quadrati-
cally for a zero-residual problem if the Jacobian JF  has full 
rank at the solution, see, e.g., [5, Sect. 4.3.2] or [34, Sect. 
10.4]. We can show that the Jacobian JF (u∗, y∗, λ∗, µ∗) has 
full rank at a generic ZGV point, where k∗ = −iλ∗ is a dou-
ble eigenvalue of (4) for ω = √

µ∗, and u∗ and y∗ are the 
corresponding right and left eigenvector. For the proof, see 
Lemma A.1 in the appendix. If ZGV points exist where the 
multiplicity of k∗ is higher than two, then, at such points, we 
can expect a linear convergence.

Let us note that the above Gauss–Newton method also 
converges to points (λ, µ) where there exists a solution 
of (34), and these include the points where the dispersion 
curves cross. At such points, we can also expect a linear 
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tensor  c is of arbitrary anisotropy. In absence of external 
loads, the mechanical displacements ũ(x, y, z, t) are gov-
erned by the boundary-value problem 

∇ · c : ∇ũ − ρ∂2
t ũ = 0 in R × Γ , � (37)

ũ = 0 on R × ∂ΓD , � (38)

en · c : ∇ũ = 0 on R × ∂ΓN . � (39)

 Therein, ∂t is the partial derivative with respect to time t, 
and ∇ = ei∂i is the Nabla operator. ∂ΓD and ∂ΓN  denote 
the parts of the cross-sectional boundary where Dirichlet 
and Neumann boundary conditions are imposed, respec-
tively. Lastly, en is the outward unit normal vector.

Due to the translational invariance in time t and the 
axial coordinate  x, modal solutions are of the form 
ũ(x, y, z, t) = u(k, y, z, ω) ei(kx−ωt). Inserting into (37)-
(39), we obtain the waveguide problem 
[
(ik)2L2 + ikL1 + L0 + ω2ρI

]
u = 0 in Γ , � (40)

u = 0 on ∂ΓD , � (41)

[ikB1 + B0] u = 0 on ∂ΓN , � (42)

which describes the plane harmonic guided wave solutions 
(k, ω, u) of interest. In the above, Li and Bj  are differential 
operators, which are explicitly given, using the 2nd-order 
tensors cij = ei · c · ej , as 

L2 = cxx , � (43)

L1 = (cxy + cyx)∂y + (cxz + czx)∂z , � (44)

L0 = cyy∂2
y + (cyz + czy)∂y∂z + czz∂2

z , � (45)

 and 

∆1z = λ∆0z, e.g., when there exist different ZGV 
points with the same k = −iλ. This is very unlikely to 
occur, except for the trivial ZGV points at λ = 0. This 
makes ZGV points with k∗ close to zero very difficult 
to compute.    

	● For an initial approximation for the left and right eigen-
vectors, we take the left and right singular vectors for 
the smallest singular value of λ2L2 + λL1 + L0 + µM .

	● In line 10, we update the target k0 in such a way that it is 
unlikely that the method will miss ZGV points in the in-
terval. We assume that if the subspace iteration method 
in line 3 returns some approximations, it does not miss 
any of the closest ZGV points. The idea is to increase the 
target either for a default step ∆k or use a larger step if 
some ZGV points were found in the last loop.

It is difficult to provide the best values for the parameters 
ka, kb, ∆k, m, as they are problem-dependent. For a sen-
sible choice when treating guided waves in plates, see 
the implementation in the package GEWtool [21] and the 
numerical examples in Sect. 7.

6  Waveguide model

While the proposed approach can be applied, quite gener-
ally, to compute critical points on eigencurves of parame-
ter-dependent quadratic eigenvalue problems, this work is 
motivated by a particular application, namely the model-
ing of elastic waves propagating along structures of con-
stant cross-section, commonly referred to as waveguides. 
In this context, a finite-element discretization of the cross-
section yields matrices with the properties discussed above. 
Hence, we will briefly summarize the formulation that has 
been deployed to obtain the matrices used in our numeri-
cal experiments. Consider a waveguide of linearly elastic 
material and arbitrary cross-section Γ as depicted in Fig. 2a. 
Its mass density is denoted as ρ, and its 4th-order stiffness 

Fig. 2  Waveguide geometries. The waveguides extend infinitely along 
ex, which corresponds to the wave vector orientation. a Arbitrary 
two-dimensional cross-section. b A plate confines waves only in the 

one-dimensional thickness direction. Γ: cross-sectional domain, ∂ΓD  
Dirichlet boundary, ∂ΓN : Neumann boundary, en: unit normal to the 
boundary, c: stiffness tensor, ρ: density, k: wave vector, h: thickness
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layers, and (ii) waveguides of two-dimensional cross-sec-
tion. In the following, we demonstrate that the method pre-
sented in Sect. 4 is capable of computing ZGV points even 
for such complex structures.

7  Numerical experiments

All numerical experiments are performed on an Apple M1 
Pro notebook with 32  GB of memory. The regularization 
parameter of the MFRD method is chosen as δ = 10−2 for 
all computations.

7.1  Austenitic steel plate

An orthotropic austenitic steel plate exhibits many ZGV 
points. They were computed in [24] with an MFRD algo-
rithm that uses eigs from Matlab to compute eigenvalues 
of (19) close to a target ik0. The matrices ∆1 and ∆0 were 
computed explicitly and are represented as sparse matrices. 
The method in Matlab first computes an LU sparse factor-
ization, which is then used to solve (24) in each step of the 
method. The example given in the mentioned reference is of 
size n = 39, which yields ∆i-matrices of size 3042 × 3042. 
The computational time with the old method was 12 s.

Instead, we can use the approach proposed in Sect. 4 to 
solve (24) without explicitly constructing the matrices ∆1 
and ∆0. In the initial phase, we compute the Schur decom-
positions of L(0)TM−T and M−1L(δ) from (32) and then 
use them to solve (32) and, thus, obtain the solution of (24). 
In this way, we never use matrices larger than n × n. Apply-
ing this procedure to the numerical example of [24] with 
n = 39 finds all 18 ZGV points in 0.5 s, which is more than 
twenty times faster than with the previous method. Note 
that the computational times are difficult to compare, as 
the strategy to update the target wavenumber also changed. 
More importantly, our new procedure scales favorably with 
the problem size, which is demonstrated by the following 
examples.

7.2  Fluid-filled pipe

The following example, taken from Cui et al. [4], con-
sists of a water-filled steel pipe with a wall thickness of 
h = 0.5 mm and an inner radius of 9.5 mm, see Fig. 3a. The 
steel pipe is characterized by shear and longitudinal wave 
speeds of ct = 3200 m

s , cℓ = 5900 m
s  and a mass density 

of 7900 kg
m3 . The water inside the pipe has a mass density 

of 1000 kg
m3  and a bulk wave speed of 1500 m

s . As the fluid 
domain is relatively large compared to the bulk wavelength 
in water, this problem requires a considerable number of 
degrees of freedom. Specifically, we used one element of 

B1 = cnx , � (46)

B0 = cny∂y + cnz∂z . � (47)

 Equations (40)-(47) are also valid for the special case of the 
infinite plate as depicted in Fig. 2b (the reader may refer to 
[24] for a succinct derivation). A plane strain field should be 
assumed in this case, i.e., all terms in ∂z  vanish while the 
equations remain otherwise unaffected. The waveguide’s 
cross-section can thereby be modeled by a one-dimensional 
discretization, as the displacements do not depend on z. 
Furthermore, by expressing the problem in cylindrical coor-
dinates, a similar formulation can be obtained for waves 
propagating along full or hollow cylinders. We also note 
that the above vector-field problem can be reduced to the 
scalar wave equation representing waves in a fluid medium, 
i.e., scalar acoustics.

The waveguide problem in (40)-(42) represents a dif-
ferential eigenvalue problem, which we discretize using a 
Galerkin finite-element procedure [6, 11, 14, 17, 20].2 This 
numerical formulation yields matrices Li, M ∈ Rn×n such 
that

W (k, ω)u :=
[
(ik)2L2 + ikL1 + L0 + ω2M

]
u = 0 � (48)

approximates the original problem (40) and respects the 
boundary conditions (41) and (42). Therein, u is the vector 
of coefficients corresponding to the chosen discretization. 
We remark that the polynomial characteristic equation of 
(48) can never exactly represent the transcendental charac-
teristic equation of the original problem. The accuracy of 
the discrete approximation increases rapidly with the chosen 
number of nodes and needs to be selected in such a way as 
to appropriately represent the full frequency range of inter-
est. Only ZGV points in this frequency range correspond to 
physically meaningful ZGV points of the waveguide. Note 
that, for a nondissipative material and real-valued parame-
ters k and ω, the waveguide operator W (k, ω) is Hermitian, 
and, furthermore, M  is positive definite.

Elastic guided waves as described by (48) usually exhibit 
several ZGV points (k∗, ω∗). As the ∆-matrices scale as 
4n2 × 4n2 (in eq. (13)) or 2n2 × 2n2 (in eq. (17)), large 
waveguide problems quickly lead to prohibitively large 
computational demands, effectively rendering the methods 
from [24] unusable. There are mainly two crucial situations 
where this is the case: (i) plates and cylinders with many 

2  Specifically, we opt, in this work, for a particular type of high-order 
polynomial interpolation (sometimes referred to as spectral elements) 
for one-dimensional cross-sections [7, 11] and for nonuniform ratio-
nal B-splines (NURBS) [8] to discretize complex 2D cross-sections. 
A review of various shape functions in the context of semi-analytical 
methods is given in [10].
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7.3  Composite plate

A plate consisting of many layers requires a large number 
of degrees of freedom to describe guided waves since each 
layer is represented by at least one finite element. We use 
the proposed method to compute ZGV points in a compos-
ite plate consisting of 400 layers with a total thickness of 
h = 50 mm. Such materials are used in the aerospace indus-
try, and this particular example is taken from [18]. The plate 
is composed of a symmetric layup of a T800/913 carbon 
fiber reinforced polymer (CFRP) as depicted in Fig. 4a. The 
mass density is given as ρ = 1550 kg

m3 , and the stiffness in 
Voight notation reads

C =




154 3.7 3.7 0 0 0
9.5 5.2 0 0 0

9.5 0 0 0
2.15 0 0

sym. 4.2 0
4.2




GPa.

In order to consistently nondimensionalize the results, we 
define the smallest shear wave velocity as ct =

√
C44/ρ.

For the frequency range of interest, it is sufficient to dis-
cretize each layer with one linear finite element. Symmetric 
and anti-symmetric waves decouple, and we consider sym-
metric waves only. This is achieved by representing one-half 
of the geometry and fixing the uy displacement at the center 
node. Lamb and shear-horizontal polarizations are coupled 
due to anisotropy. This requires modeling all three displace-
ment components in the equations of motion (40)-(42). 

7th order (eight nodes) to discretize the pipe wall, while the 
fluid domain required a polynomial degree of 140 to yield 
accurate results within the selected frequency range.3 In the 
pipe wall, we assume displacements u(r) e i(kx+nφφ+ωt) of 
integer circumferential order nφ (similarly for the acous-
tic pressure in the fluid). This enables us to discretize 
only a radial line as sketched in Fig. 3a. As an additional 
challenge, the pressure-displacement formulation leads 
to non-Hermitian matrices, and a complex formulation of 
the Newton-iteration refinement as described in Sect. 5.1 
is required. For comparison with the literature, we choose 
nφ = 0 and u = uxex + urer to obtain the so-called longi-
tudinal modes L(0, m) [4]. Overall, this results in matrices 
Li and M  in (48) of size 157 × 157 and ∆-matrices of size 
49298 × 49298. As demonstrated by Cui et al. [4], multiple 
ZGV points are found in the frequency region close to the 
backward wave of the empty pipe, i.e., the curve with nega-
tive slope in Fig. 3b. Using parameters m = 8, kah = 0.01, 
kbh = 2, ∆kh = 0.05, our algorithm locates all 15 ZGV 
points in 11 s. The result is depicted in Fig. 3b.    

3  While such large polynomial degrees are generally uncommon in the 
Finite Element Method, they have been found to be remarkably effi-
cient in this particular context of waveguide modeling. This is because 
the bottleneck in the computation of the dispersion relations is the 
(complete) solution of an eigenvalue problem. The costs for this solu-
tion for moderate matrix sizes depend mainly on the matrix size rather 
than its sparsity. Hence, in contrast to most finite element applications, 
which require mainly the solution of linear systems of equations, it is, 
in this case, desired to obtain small matrices, even if they are dense. 
The advantage of such large element orders was described in [11] and 
discussed in more detail in [7].

Fig. 3  Longitudinal waves in a water-filled steel pipe. a  Geometry: 
cross-section of the water-filled circular steel pipe of inner radius 
9.5  mm and outer radius 10  mm. b  Dispersion curves of longitudi-

nal modes, i.e., ux-ur-polarized waves. The dispersion curves of the 
empty pipe are shown for comparison. The fluid-filled pipe exhibits 15 
ZGV points close to the backward wave of the free pipe
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and their dynamic properties are often investigated due to 
the relevance of acoustic emission and ultrasonic material 
testing, see, e.g., [6, 13, 39, 40] and the references therein. 
This particular geometry has been studied in [8], where dis-
persion curves have already been computed based on the 
semi-analytical formulation outlined in Sect. 6. Instead of 
conventional finite elements, the cross-section is discretized 
by means of non-uniform rational B-splines (NURBS), 
which allow for the exact description of this shape without 
introducing geometry approximation errors. Furthermore, 
NURBS are very robust at high frequencies. However, for 
the discussion in this paper, these differences are of lesser 
significance, as the obtained matrices possess the same rel-
evant properties compared to using high-order polynomials. 
For computing the ZGV points, we use the discretization 
suggested in [8] for computing dispersion curves for the first 
nine modes up to a frequency of 10 kHz. Specifically, the 
interpolation relies on the 30 patches shown in Fig. 5a, each 
of them locally refined using NURBS of the third order, 
resulting in matrices of size 1020 × 1020. For clarity, the 
figure only includes the minimal number of control points 
required to describe the geometry. A simple isotropic lin-
early elastic material is assumed with a Poisson's ratio of 
ν = 0.2. To nondimensionalize the results for consistency 
with the other examples, we define h = 172mm  as the 
height of the rail, i.e., the largest extent in the y-direction.
The dispersion curves are displayed in Fig. 5b, together with 
the two ZGV points found within the selected frequency 
range. Using m = 6, kah = 0.1, kbh = 2, ∆kh = 0.2, 
Algorithm 1 locates the two ZGV points in 545 s (9 min).

Proceeding as described previously yields the matrices Li 
and M from (48) of size 602 × 602. Note that the corre-
sponding ∆i-matrices are of size 724 808 × 724 808, which 
is considerable.

The dispersion curves corresponding to propagation 
along ex are shown in Fig. 4b. There exists a point where 
∂ω/∂k = 0, and it is marked therein. Using the parameters 
m = 8, kah = 0.2, kbh = 2, ∆kh = 0.1, our algorithm 
was able to successfully locate it in 43 s. It is important to 
remark that the group velocity is a vector parallel to the xz-
plane. For anisotropic plates, it is not necessarily collinear 
to the wave vector k and this has important consequences, 
see [23] for a detailed discussion. Here, it is of importance 
that the derivative ∂ω/∂k represents the group velocity 
component along the wave vector k. Since our numerical 
methods compute points such that ∂ω/∂k = 0, we find the 
waves whose group velocity is orthogonal to the wave vec-
tor or vanishes altogether. This was exploited in [22, 23] to 
find waves with a power flux transverse to their wave vector. 
As a side note, we also remark that the dispersion curves in 
Fig. 4b do not exhibit crossings. Instead, they get very close 
and then veer apart; see [9] for details on this phenomenon.

7.4  Rail

In this numerical experiment, we compute ZGV points of 
a relatively complex three-dimensional structure, namely, a 
rail with the cross-section depicted in Fig. 5a, subject to trac-
tion-free boundary conditions. Rails are typical examples of 
guided wave propagation in three-dimensional structures, 

Fig. 4  Composite plate of symmetric layup [0/90/45/-45]50s. a Geome-
try: the fibers in each layer are oriented at angle θ as indicated; thereby, 
θ represents the angular coordinate rotating around ey  and measured 
from ex. All 400 layers are of the same thickness and amount to a total 

of 50 mm. b Dispersion curves for wave vectors k = kex, i.e., θ = 0◦. 
One point exists where the axial group velocity component ∂ω/∂k 
vanishes, and it is marked in the plot
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eigenvalue problem (18) are of size 2n2. If the matrices Li 
and M  are large, the memory required for saving a sufficient 
number of vectors of this size can become prohibitively 
large. A possible solution that could extend the approach to 
large and sparse matrices Li and M  would be to generalize 
the subspace iteration methods from [29], which exploit the 
low-rank format of the vectors and work only on vectors of 
size n.

Quadratic convergence of the Gauss–
Newton method

Lemma A.1  Let ξ ∈ Ω be an eigenvalue of algebraic mul-
tiplicity two and geometric multiplicity one of a nonlinear 
eigenvalue problem N (λ)u = 0 , where N : Ω → Cn×n  
is holomorphic on a domain Ω ⊆ C. Let nonzero vectors 
u, z, s, p ∈ Cn  be, respectively, the right and left eigenvec-
tor and the right and left root vector of height two such that 

N(ξ)u = 0, � (50)

N(ξ)s + N ′(ξ)u = 0, � (51)

zHN(ξ) = 0, � (52)

pHN(ξ) + zHN ′(ξ) = 0. � (53)

 Then

zHN ′(ξ)s + pHN ′(ξ)u + zHN ′′(ξ)u ̸= 0.

8  Possible generalizations

It is possible to define ZGV points for similar two-param-
eter eigenvalue problems. For example, in [36], the criti-
cal points of dispersion curves for the eigenvalue problem 
(A + λB + µC)x = 0 are discussed. The obtained numeri-
cal methods for this problem are very similar, and we can 
apply the MFRD and the Gauss–Newton method, suitably 
modified to the structure of the eigenvalue problem. Specifi-
cally, we need to modify the approach in Sect. 4 so that we 
can use a subspace method in the MFRD without explic-
itly constructing large ∆ matrices for the related MEP. In a 
similar way, it would be possible to define a ZGV point and 
extend the theory and numerical methods for a parameter-
dependent polynomial eigenvalue problem of the form

P (k, ω)u :=((ik)dLd + (ik)d−1Ld−1 + · · ·
+ ikL1 + L0 + ω2M) u = 0,

� (49)

or for a nonlinear parameter-dependent eigenvalue problem 
N(k, ω)u = 0, where N : C2 → Cn×n.

9  Conclusion

The improved approach enables us to tackle significantly 
larger problems and compute more accurate solutions in 
cases where it was previously either impossible to construct 
the matrices ∆0, ∆1, ∆M  explicitly, or the computation 
was unfeasibly slow. For even larger n, the improved algo-
rithm also eventually reaches its limits due to the consider-
able memory requirements. Namely, vectors that span the 
search subspace in the subspace iteration method for the 

Fig. 5  Wave propagation along a free rail. a Discretization of the cross-section, showing a division into 30 patches and the control points for 
describing the contour. b Dispersion curves of all propagating modes and the two ZGV points found within the chosen frequency range
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Proof  If we multiply (51) by pH from the left and 
(53) by s from the right, we observe the equality 
zHN ′(ξ)s = pHN ′(ξ)u. Since it follows from [30, 
Thm. 1.6.5], see also [12, Thm. 2.5], that

zHN ′(ξ)s + zH N ′′(ξ)
2

u ̸= 0,

this completes the proof. � □

Lemma A.2  Let (k∗, ω∗) be a ZGV point of (1), such that 
the algebraic multiplicity of k∗ as an eigenvalue of the 
QEP (4) is two, and the geometric multiplicity is one. Let 
u∗ and z∗ be the corresponding right and left eigenvectors, 
y∗ = z∗, and let a and b be such vectors that aH u∗ = 1  and 
bH y∗ = 1 . The Jacobian JF(u∗, y∗, λ∗, µ∗), given in (36), 
where λ∗ = ik∗ and µ∗ = ω2

∗ , has full rank.

Proof  Suppose that the Jacobian JF (u∗, y∗, λ∗, µ∗) is rank 
deficient. Then, there exist vectors s, t and scalars α, β, not 
all being zero, such that

JF (u∗, y∗, λ∗, µ∗)
[
sT tT α β

]T = 0.

Then 

(λ2
∗L2 + λ∗L1 + L0 + µ∗M)s + α(2λ∗L2 + L1)u∗ + βMu∗ = 0, � (54)

(λ2
∗L2 + λ∗L1 + L0 + µ∗M)Tt + α(2λ∗L2 + L1)y∗ + βMTy∗ = 0, � (55)

yT
∗ (2λ∗L2 + L1)s + uT

0 (2λ∗L2 + L1)Tt + 2αyT
∗ L2u0 = 0, � (56)

uH
∗ s = 0, � (57)

yH
∗ t = 0. � (58)

First, we show that β = 0. If we multiply (54) by zH
∗ , 

then it follows that β = 0 because zH
∗ (2λ∗L2 + L1)u0 = 0 

due to a ZGV point and zH
∗ Mu∗ ̸= 0 because we require 

that ω∗ is a simple eigenvalue of W (k∗, ω).
If α ̸= 0, then it follows from (54) and (55) that (1/α)s 

and (1/α)t are left and right root vectors of height 2 of the 
QEP N(λ)u := (λ2L2 + λL1 + L0 + µ∗M)u = 0 for the 
eigenvalue λ∗. But then it follows from Lemma A.2 that 
(56) is not zero. Therefore, α = 0.

Since α = β = 0 it follows from (54) that s = γu∗ for a 
scalar γ and then s = 0 because of (57). In a similar way we 
get from (55) and (58) that t = 0. This shows that the kernel 
of JF (u∗, y∗, λ∗, µ∗) is trivial. □
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