Assignment 0: Newmark time-stepping

- In Assignment A0, tasks 4.2 4.9 you are asked to implement a Newmark scheme for time stepping.
- We know
 - It he differential equation of motion of the system we want to simulate (2nd order in time).

Note: This equation tells us how the "acceleration" $\underline{\ddot{u}}(t)$ behaves. From the Galerkin discretization:

$$\underline{\underline{M}} \cdot \underline{\underline{u}}(t) = -\underline{\underline{K}} \cdot \underline{\underline{u}}(t)$$
(1)

- **2** the state of the system at time t_i , i.e., the value of the unknown \underline{u}_i and the "velocity" $\underline{\dot{u}}_i$.
- We want to
 - \rightarrow find a *good* way of computing the unknown state of the system at the next time step t_{i+1} .
- Problem: Equation (1) gives us one equation to find <u>u</u>_{i+1} = <u>u</u>(t_{i+1}). However, together with <u>u</u>_{i+1} and <u>u</u>_{i+1} we have a total of three unknowns! → We need two more equations.

ISE

Mean value ansatz for the velocity

The Newmark scheme is based on the idea, that we can get the correct value of <u>u</u> at the new time t_{i+1} by using a combination of the slopes at the current time t_i (i.e., <u>u</u>_i) and the new time t_{i+1} (i.e., <u>u</u>_{i+1}). See the following sketch:

• We can obtain the new velocity $\underline{\dot{u}}_{i+1}$ as

$$\underline{\dot{u}}_{i+1} = \underline{\dot{u}}_i + (1 - \gamma)\Delta t \underline{\ddot{u}}_i + \gamma \Delta t \underline{\ddot{u}}_{i+1}.$$
(2)

151

Idea of the Newmark scheme

- Assume we know $\underline{\dot{u}}_{i}$. (We do because we know the state at time t_i).
- Equation (2) yields the exact value for the unknown <u>u</u>_{i+1} if we pick the value of γ ∈ [0, 1] correctly.
- We don't know the correct value for γ , but we can make a guess to end up having a better approximation to $\underline{\dot{u}}_{i+1}$ than simply using the forward scheme $\underline{\dot{u}}_{i+1} = \underline{\dot{u}}_i + \Delta t \underline{\ddot{u}}_i$.
- But how do we get the unknown \underline{u}_{i+1} ? \rightarrow We need one more equation.

Idea of the Newmark scheme II

 Similarly, we can use a mean-value ansatz to obtain the new values <u>u</u>_{i+1}. However, we use a second order Taylor series for <u>u</u>(t):

$$\underline{u}_{i+1} = \underline{u}_i + \Delta t \underline{\dot{u}}_i + \frac{1}{2} \Delta t^2 \underline{\ddot{u}}_\beta , \qquad (3)$$

with

$$\underline{\ddot{\mu}}_{\beta} = (1 - 2\beta)\underline{\ddot{\mu}}_{i} + 2\beta\underline{\ddot{\mu}}_{i+1}, \quad \beta \in [0, 1/2].$$
(4)

Combining the last two equations yields

$$\underline{u}_{i+1} = \underline{u}_i + \Delta t \underline{\dot{u}}_i + \frac{1}{2} \Delta t^2 \left[(1 - 2\beta) \underline{\ddot{u}}_i + 2\beta \underline{\ddot{u}}_{i+1} \right],$$
(5)

- Again, due to the mean-value theorem, if we choose the correct value for β , we end up with the exact value of \underline{u}_{i+1} .
- But we don't know β, so we also make a guess for the value of β which will hopefully give us a good approximation for <u>u</u>_{i+1}.

Lehrstuhl für Sensorik

Remark on the Newmark parameters

Note: You can choose the value of the Newmark parameters γ and β as you desire (within their definition range). If their values are arbitrary, how can you still end up with correct solutions of your simulation?

- Because as long as Δt is small enough, it does not matter whether you use
 - $\rightarrow \underline{\dot{u}}_i$ or $\underline{\dot{u}}_{i+1}$ (see sketch)
 - $\rightarrow \ddot{u}_i$ or $\underline{\ddot{u}}_{i+1}$.

(Requires the solutions to be smooth.)

- Why are γ and β there then in the first place? Because depending on your choice of the Newmark parameters, you might get better or worse results.
 - \rightarrow Most importantly, it affects the stability conditions of the time-stepping scheme (restrictions on Δt).
 - Note: if your time-stepping is unstable, your errors may grow over time without bound (errors $\rightarrow \infty$). You don't want that!
- Questions:
 - \to For what values of $\gamma,\,\beta$ is the time-stepping unconditionally stable? Does that mean that you don't have errors?
 - $\rightarrow\,$ What is an explicit and an implicit scheme? What is the difference between the two?

Lehrstuhl für Sensorik

The Newmark time-stepping

• From (1) we know that

$$\underline{\underline{M}} \cdot \underline{\underline{u}}_{i+1} = -\underline{\underline{K}} \cdot \underline{\underline{u}}_{i+1} \,. \tag{6}$$

- With (6), (2) and (5) we now have three equations for the three unknowns <u>ü</u>_{i+1}, <u>ü</u>_{i+1} and <u>u</u>_{i+1}. → We can solve the system.
- Task: Insert (5) into (6) and solve for $\underline{\ddot{u}}_{i+1}$. You can use the result to
 - **1** Compute $\underline{\ddot{u}}_{i+1}$.
 - **2** Knowing $\underline{\ddot{u}}_{i+1}$, you can compute $\underline{\dot{u}}_{i+1}$ with (2).
 - **3** Knowing $\underline{\dot{u}}_{i+1}$ and $\underline{\ddot{u}}_{i+1}$, you can compute \underline{u}_{i+1} using (5).
 - **4** Knowing \underline{u}_{i+1} , $\underline{\dot{u}}_{i+1}$ and $\underline{\ddot{u}}_{i+1}$, you can compute \underline{u}_{i+2} , $\underline{\dot{u}}_{i+2}$ and $\underline{\ddot{u}}_{i+2}$! :)

 \rightarrow In other words: You can perform a transient simulation of your system!

References

Have fun simulating!

- For the Wikipedia article, refer to
 - \rightarrow https://en.wikipedia.org/wiki/Newmark-beta_method.
- The idea of the method is based on the *extended mean value theorem*, see
 - \rightarrow https://en.wikipedia.org/wiki/Mean_value_theorem#Cauchy.27s_ mean_value_theorem.