Assignment 0: Newmark time-stepping

- In Assignment A0, tasks 4.2-4.9 you are asked to implement a Newmark scheme for time stepping.
- We know

1 the differential equation of motion of the system we want to simulate (2nd order in time).
Note: This equation tells us how the "acceleration" $\underline{\ddot{u}}(t)$ behaves. From the Galerkin discretization:

$$
\begin{equation*}
\underline{\underline{M}} \cdot \underline{\ddot{u}}(t)=-\underline{\underline{K}} \cdot \underline{u}(t) \tag{1}
\end{equation*}
$$

2 the state of the system at time t_{i}, i.e., the value of the unknown \underline{u}_{i} and the "velocity" $\underline{\dot{\dot{u}}}_{i}$.

- We want to
\rightarrow find a good way of computing the unknown state of the system at the next time step t_{i+1}.
- Problem: Equation (1) gives us one equation to find $\ddot{\ddot{u}}_{i+1}=\underline{\ddot{u}}\left(t_{i+1}\right)$. However, together with $\underline{\dot{u}}_{i+1}$ and \underline{u}_{i+1} we have a total of three unknowns! \rightarrow We need two more equations.

Mean value ansatz for the velocity

- The Newmark scheme is based on the idea, that we can get the correct value of $\underline{\dot{u}}$ at the new time t_{i+1} by using a combination of the slopes at the current time t_{i} (i.e., $\ddot{\ddot{u}}_{i}$) and the new time t_{i+1} (i.e., $\ddot{\ddot{ }}_{i+1}$). See the following sketch:

- We can obtain the new velocity $\dot{\underline{\dot{u}}}_{i+1}$ as

$$
\begin{equation*}
\underline{\dot{\dot{u}}}_{i+1}=\underline{\dot{\dot{u}}}_{i}+(1-\gamma) \Delta t \underline{\ddot{\ddot{u}}}_{i}+\gamma \Delta t \underline{\ddot{u}}_{i+1} . \tag{2}
\end{equation*}
$$

Idea of the Newmark scheme

- Assume we know $\dot{\underline{\dot{u}}}_{i}$. (We do because we know the state at time t_{i}).
- Equation (2) yields the exact value for the unknown $\dot{\underline{u}}_{i+1}$ if we pick the value of $\gamma \in[0,1]$ correctly.
- We don't know the correct value for γ, but we can make a guess to end up having a better approximation to $\dot{\underline{\dot{u}}}_{i+1}$ than simply using the forward scheme $\underline{\underline{\dot{u}}}_{i+1}=\underline{\underline{u}}_{i}+\Delta t \underline{\ddot{u}}_{i}$.
- But how do we get the unknown \underline{u}_{i+1} ? \rightarrow We need one more equation.

Idea of the Newmark scheme II

- Similarly, we can use a mean-value ansatz to obtain the new values \underline{u}_{i+1}. However, we use a second order Taylor series for $\underline{u}(t)$:

$$
\begin{equation*}
\underline{u}_{i+1}=\underline{u}_{i}+\Delta t \underline{\dot{u}}_{i}+\frac{1}{2} \Delta t^{2} \ddot{\underline{\ddot{u}}}_{\beta}, \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\underline{\underline{u}}_{\beta}=(1-2 \beta) \ddot{\underline{\ddot{u}}}_{i}+2 \beta \ddot{\underline{\ddot{u}}}_{i+1}, \quad \beta \in[0,1 / 2] . \tag{4}
\end{equation*}
$$

- Combining the last two equations yields

$$
\begin{equation*}
\underline{u}_{i+1}=\underline{u}_{i}+\Delta t \dot{\underline{u}}_{i}+\frac{1}{2} \Delta t^{2}\left[(1-2 \beta) \ddot{\ddot{u}}_{i}+2 \beta \ddot{\ddot{u}}_{i+1}\right], \tag{5}
\end{equation*}
$$

- Again, due to the mean-value theorem, if we choose the correct value for β, we end up with the exact value of \underline{u}_{i+1}.
- But we don't know β, so we also make a guess for the value of β which will hopefully give us a good approximation for \underline{u}_{i+1}.

Remark on the Newmark parameters

Note: You can choose the value of the Newmark parameters γ and β as you desire (within their definition range). If their values are arbitrary, how can you still end up with correct solutions of your simulation?

- Because as long as Δt is small enough, it does not matter whether you use
$\rightarrow \underline{\underline{\dot{u}}}_{i}$ or $\underline{\underline{\dot{u}}}_{i+1}$ (see sketch)
$\rightarrow \ddot{u}_{i}$ or $\underline{\ddot{u}}_{i+1}$.
(Requires the solutions to be smooth.)
- Why are γ and β there then in the first place? Because depending on your choice of the Newmark parameters, you might get better or worse results.
\rightarrow Most importantly, it affects the stability conditions of the time-stepping scheme (restrictions on Δt).
Note: if your time-stepping is unstable, your errors may grow over time without bound (errors $\rightarrow \infty$). You don't want that!
- Questions:
\rightarrow For what values of γ, β is the time-stepping unconditionally stable? Does that mean that you don't have errors?
\rightarrow What is an explicit and an implicit scheme? What is the difference between the two?

The Newmark time-stepping

- From (1) we know that

$$
\begin{equation*}
\underline{\underline{M}} \cdot \underline{\ddot{\ddot{u}}}_{i+1}=-\underline{\underline{K}} \cdot \underline{u}_{i+1} . \tag{6}
\end{equation*}
$$

- With (6), (2) and (5) we now have three equations for the three unknowns $\underline{\ddot{\ddot{H}}}_{i+1}, \dot{\underline{\dot{u}}}_{i+1}$ and $\underline{u}_{i+1} . \rightarrow$ We can solve the system.
- Task: Insert (5) into (6) and solve for $\underline{\ddot{u}}_{i+1}$. You can use the result to

1 Compute $\underline{\ddot{u}}_{i+1}$.
2 Knowing $\underline{\ddot{u}}_{i+1}$, you can compute $\underline{\dot{u}}_{i+1}$ with (2).
3 Knowing $\underline{\dot{u}}_{i+1}$ and $\underline{\ddot{u}}_{i+1}$, you can compute \underline{u}_{i+1} using (5).
4 Knowing $\underline{u}_{i+1}, \underline{\underline{u}}_{i+1}$ and $\underline{\ddot{u}}_{i+1}$, you can compute $\underline{u}_{i+2}, \underline{\underline{u}}_{i+2}$ and $\underline{\ddot{u}}_{i+2}$!:)
\rightarrow In other words: You can perform a transient simulation of your system!

References

Have fun simulating!

- For the Wikipedia article, refer to
\rightarrow https://en.wikipedia.org/wiki/Newmark-beta_method.
- The idea of the method is based on the extended mean value theorem, see
\rightarrow https://en.wikipedia.org/wiki/Mean_value_theorem\#Cauchy.27s_ mean_value_theorem.

