Gaussian Pulse

- In Assignment A0, task 4.11.1 you are asked to define the initial displacement \underline{u}_{0} as a "Gauss-modulated cosine". The cosine will give you the harmonic oscillations, while the Gaussian specifies the envelope (change in amplitude) of the cosine.

Gaussian

x : your coordinates
$\mu:$ mean - is the position of the peak
$\sigma:$ standard deviation - a measure for the "width" of the Gaussian.

- Note: The Gaussian distribution is infinite in width, both in $x \rightarrow+\infty$ as well as $x \rightarrow-\infty$. This is why we need a statistical definition of the width (or equivalently via energy considerations). σ is sometimes also called the root-mean-square (RMS) width.

Gaussian function - Discussion

- Read the following references:
\rightarrow Gaussian: https://en.wikipedia.org/wiki/Gaussian_function
\rightarrow Standard deviation: https://en.wikipedia.org/wiki/Standard_ deviation\#Rules_for_normally_distributed_data
- Question: What is the peak height, i.e., amplitude, of the Gaussian on the previous slide?

Cosine

$$
\begin{aligned}
& \quad \text { coordinate } \\
& \Gamma \\
& \cos \left(\frac{2 \pi x}{\lambda_{c}}+\overparen{\varphi}\right) \text { phose } \\
& C \text { at } x=0
\end{aligned}
$$

- The cosine is giving you the oscillations.
- After modulation, λ_{c} is the center wavelength. Consider that after modulation, the bandwidth of the signal is no longer zero. Instead your signal then contains a spectrum of wavelengths.
- The argument of the cosine is called the phase. Therefore,

$$
\begin{equation*}
\frac{2 \pi L}{3 \lambda_{c}}+\varphi \tag{1}
\end{equation*}
$$

is the phase at $x=L / 3$. According to the assignment, this phase should be zero.

Gauss-modulated cosine

- Task description:
$\rightarrow \underline{u}_{0}$: This is the initial "disturbance". Use a Gauss-modulated cosine centered at $x_{0}=L / 3$, a 1-sigma width of $w=4 \mathrm{~cm}$, and a center wavelength $\lambda_{c}=6 \mathrm{~cm}$. Make sure that the phase of the cosine is zero at x_{0}. Write down the expression for \underline{u}_{0} before implementing it.
- x_{0} is giving you the "mean" of the Gaussian (its position).
- w is the standard deviation.
- λ_{c} is the wavelength.
- The orange sentence is giving you φ.
- Resulting Gaussian Pulse:

$$
\begin{equation*}
\mathrm{e}^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \cos \left(\frac{2 \pi}{\lambda_{c}} x+\varphi\right) \tag{2}
\end{equation*}
$$

Gaussian Pulse

- Resulting Gaussian pulse:

- Questions:
\rightarrow Why do we need to specify an envelope?
\rightarrow Why are we using a Gaussian pulse? Why not just a cosine modulated with a rectangular window, i.e., a burst with certain number of periods? If we did so, what would we need to change/consider in our FEM simulation?
\rightarrow Perform the simulation for a 3-period burst!

