
Numerical Simulation of Sensors and Actuators
Date: April 2020
Assignment due: 2020-05-19 at 11:55pm

Lehrstuhl für Sensorik
Universität Erlangen-Nürnberg
Daniel Kiefer

Assignment 0: FEM Implementation – Modal Analysis and
Time Stepping

A typical string of a guitar has scale length L = 0.660 m and a linear mass density of µ = 3 g/m.
Assume that the string is tightened to a tension of T = 64 N. Denote the coordinate along the string
with x and the transversal displacement of the string with u. The free motion of the string that is
fixed at both ends is described by the following boundary value problem (BVP):

Tu′′ = µü on x ∈ Ω = [0, L] , (1a)

u(0) = 0 , (1b)

u(L) = 0 , (1c)

In this assignment you will implement a Finite Element code to

• compute the harmonic vibrations of the string and

• visualize a disturbance traveling along the string (lossless transmission line).

Note: This assignment builds upon Assignment 0 of CAE of Sensors and Actuators from last
semester. You shall extend the code in order to solve eigenvalue problems and time-dependent
problems. A reference implementation of last semester’s code is provided on StudOn. You can
either use this code or your own code as a starting point. Re-use of the code whatever you deem
convenient.

1 Preparation: Galerkin discretization

1.1. Write down the weak form of the BVP (1).

1.2. Perform a Galerkin discretization of the resulting weak form. Thereby, do not consider the
BCs directly. Instead, use the ansatz

u(x) ≈
N∑
j=1

Nj(x)uj

v(x) ≈
N∑
i=1

Ni(x)vi

for the test function v(x) and the trial function u(x). This will yield a semi-discrete linear
system of the form

−K · u(t) = M · ∂
2

∂t2
u(t) , (2)

with the global stiffness matrix K and the global mass matrix M.

1.3. Write down the expressions of the components keab of the element stiffness matrix using linear
shape functions in terms of local coordinates (reference element). Which components are
equal?

1.4. Write down the expressions of the components me
ab of the element mass matrix using linear

shape functions in terms of local coordinates (reference element). Which components are
equal?

1



2 FE implementation

Your code should be structured in several functions, each contained in a separate file. Make sure
that you have at least the following set of files:

2.1. generateMesh.m: returns a Matlab structure fully-describing the mesh, including the node
connectivity.

2.2. jacobi.m: returns the Jacobi matrix of an element. The Jacobi matrix reduces to a scalar in
the 1D-case, which is simply the element size.

2.3. elementStiffness.m: returns the element stiffness matrix.

2.4. elementMass.m: returns the element mass matrix.

2.5. assembleMatrix.m: assembles the element matrices into a global matrix.

2.6. newmarkScheme.m: performs the time-stepping.

2.7. modal_analysis.m: the main script for computing the string’s modes.

2.8. transient_analysis.m: the main script for performing the transient analysis.

Tip: After implementing a function, test if it is doing what you expect. Only if it passes the test
you should proceed to the next function.

You can and should re-use the functions from last semester, whenever possible and suitable. We
suggest to proceed as follows:

2.9. Implement the generateMesh(domain, nElems) function.

2.10. Implement the jacobi(mesh, elem) function.

2.11. Implement the elementStiffness(..) function. Pass as argument whatever you deem neces-
sary. You can choose whether to perform the integration beforehand on paper and hard-code
the solution or if you prefer to perform a numerical integration. In any case, the code should
be valid for any equidistant mesh and tension T .

2.12. Implement the elementMass(..) function. Pass as argument whatever you deem necessary.
You can choose whether to perform the integration beforehand on paper and hard-code the
solution or if you prefer to perform a numerical integration. In any case, the code should be
valid for any equidistant mesh and mass density µ.

2.13. Implement the assembleMatrix() function. Pass as argument whatever you deem neces-
sary. One argument could be a function handle to either of the element matrices, i.e.,
@elementStiffness or @elementMass. That way, you can use the same function to assemble
both of the global matrices.

The main scripts and the Newmark scheme will be implemented in the next two sections.

3 Modal Analysis

In this section we assume a harmonic time-dependence of the displacements, i.e.,

u(t) = û eiωt , (3)

with angular frequency ω = 2πf . We consider it as understood, that only the real part of the
complex valued function u(t) in (3) is the actual solution.

2



3.1. Insert the ansatz (3) into your semi-discrete Galerkin formulation from task 1.2. and simplify
the resulting expression as much as possible. If correct, no dependence on the exponential
function should remain. The obtained equation is often referred to as a generalized eigenvalue
problem and the eigenvalue is λ = ω2.

3.2. Convert the generalized eigenvalue problem of task 3.1. to an ordinary eigenvalue problem,
i.e., of the form D · u = λu.

Now you can implement the main script modal_analysis.m:

3.3. Define all physical and mesh-relevant parameters you need.

3.4. Generate the mesh.

3.5. In the mesh, set the nodes where Dirichlet boundary condition will be applied.

3.6. Assemble the global stiffness and mass matrices. Remember that these are the full matrices
that do not yet incorporate the boundary conditions.

3.7. Incorporate the boundary conditions into the obtained matrices.

3.8. Using the resulting K and M matrices, compute the matrix D that you obtained in task 3.2.

3.9. Inspect the D matrix you obtained:

3.9.1. Do you have zero-valued columns and rows? Which ones? Why? What would happen if
you were to compute the eigenvalues of this matrix? Try it out using eig(). What do
you observe?

3.9.2. Is the matrix symmetric? Should it be symmetric? What kind of eigenvalues does a
symmetric Matrix have? Hint: You can use the Matlab function issymmetric().

3.9.3. We computed the matrix D numerically and the asymmetry could be due to numerical
inaccuracy. Is the matrix almost symmetric? You can test this by inspecting the maxi-
mum deviation from zero of D−DT because this should be exactly zero for a symmetric
matrix. Floating point arithmetic always generates errors relative to the absolute values
of the numbers. That is why you should compare the deviation to the maximum absolute
entry in D. Better even: first normalize D in Matlab to D/norm(D). How close is this
maximum deviation to the machine precision eps? Can it be said, that the matrix D is
symmetric within machine precision?
Hint: the transposition operator in Matlab is .’, while the ’-operator is the conjugate
transpose!

3.10. Reduce the D matrix to the degrees of freedom that need to be solved for. Hint: setdiff()

might be a useful function.

3.11. Compute the eigenvalues λ and corresponding eigenvectors u using the Matlab function eig().

3.12. Sort the eigenvalues from lowest to highest. Make sure that the eigenvectors are sorted in
the same way. Hint: use diag() to extract a matrix’s diagonal and use sort() to obtain
the permutation that you need to apply to the columns of the matrix containing all the
eigenvectors.

3.13. Extend all eigenvectors (which have been computed only at the inner/free nodes) with the
Dirichlet values.

3.14. Compute the eigenfrequencies f from the eigenvalues λ.

3.15. What is the fundamental frequency of the guitar string we are analyzing? Which note does it
correspond to?

3



Now assess and visualize your solution:

3.16. Compute the eigenfrequencies of the string using the analytical formula

fn =
n

2L

√
T

µ
, n ∈ Z\0 . (4)

3.17. Compute the relative deviation between the analytical and the numerical solution. How large
are the deviations for the first four modes in percent? Is this a good correspondence?

3.18. Plot the modal structures (eigenvectors) of the first four modes in one single figure. Remember
to always label the axes and add a legend if necessary.

3.19. Generate an animation of the modal structures of the first four modes. Remember that the
time-dependence of the vibrations is given by the real part of (3). You will find a skeleton for
how to generate the animation in the code provided on StudOn.

Remark: In practice, you would not first reduce the generalized eigenvalue problem to an ordinary
eigenvalue problem before solving. Instead, numerical solution methods are directly applied to the
generalized eigenvalue problem as obtained in task 3.1. You can also do this using the Matlab
function eig(). Try it out if you want! A direct solution procedure does not only avoid the
computation of the form A−1B, but is also more general because it might be used even when A is
not invertible!

4 Transient analysis

In this section, we analyze the same fixed string as before but with respect to another application: a
transmission line. We are, therefore, interested in how a given initial disturbance propagates along
the string.

4.1. What is the wave speed at which this disturbance propagates?

For a full analysis we need to solve the transient problem as given in (2). To solve this problem, you
will implement and apply the Newmark scheme (Newmark-beta method). You learned this method
in CAE of Sensors and Actuators for solving transient acoustics and mechanics.

4.2. Perform the Newmark time-discretization by writing down the discrete system of equations.
These should depend only on

• the quantities that are used in the semi-discrete Galerkin system (2),

• the known values un, u̇n and ün of the “current time step”, as well as

• the unknown values for the “next time step” un+1, u̇n+1 and ün+1.

The latter are the ones that need to be solved for. How many equations do you need for this?
Do you have enough equations?

4.3. Re-write the equations so that only the unknowns un+1, u̇n+1 and ün+1 are on the left hand
side while the right hand side contains only known quantities.

Implement the time-stepping scheme in the function newmarkScheme(M, K, u0, v0, Tend, dt,...

betta, gamma). As arguments you will pass the mass and stiffness matrix with incorporated bound-
ary conditions, the initial displacement and velocity vector, the ending time of the investigated time
interval [0,Tend], the time-step size and the Newmark parameters β and γ. For the implementation
you can proceed as follows:

4.4. Initialize variables for the current values un, u̇n and ün (the acceleration is zero).

4



4.5. Determine the total number of time steps.

4.6. Allocate memory for the solution by creating a zero-matrix u of appropriate dimensions. The
nth column shall contain the solution vector at time t = (n− 1) dt = tn−1.

4.7. Initialize the first column of u with u0.

4.8. Compute the matrices appearing in the equations you derived in task 4.3..

4.9. Loop over all time steps (remember that the first one is known) and compute the new values:

4.9.1. In which order do you have to compute un+1, u̇n+1 and ün+1? Compute these vectors
one after another in this order.

4.9.2. Save the result of un+1 to the corresponding position in the solution matrix u.

4.9.3. Prepare for the next iteration by updating un, u̇n and ün to un+1, u̇n+1 and ün+1,
respectively.

Lastly, implement the main script transient_analysis.m:

4.10. You can re-use the initial part of modal_analysis.m, which you implemented in tasks 3.3. to
3.7..

4.11. Define the initial displacement u0 and velocity v0:

4.11.1. u0: This is the initial “disturbance”. Use a Gauss-modulated cosine centered at x0 = L/3,
a 1-sigma width of w = 4 cm, and a center wavelength λc = 6 cm. Make sure that the
phase of the cosine is zero at x0. Write down the expression for u0 before implementing
it.

4.11.2. v0 = u̇0 = 0.

4.11.3. Plot u0 and verify it corresponds to what you expected.

4.12. Define your simulation length such that a pulse traveling in positive x-direction and being
reflected at x = L has enough time to get back to its original position at x0 = L/3. Write
down the expression for Tend.

4.13. Set β = 1/4 and γ = 1/2.

4.14. Choose an appropriate time step dt. What values for the time step yield stable solutions?
What if you had chosen β and γ differently?

4.15. Call the function newmarkScheme() to perform the time-stepping.

4.16. Create a distance-time plot: use imagesc() to plot the local amplitude at x and t with a color
code. Make sure to use a perceptually uniform color map, e.g., parula.

4.17. Animate the solution. You will find a skeleton for how to generate animations in the code
provided on StudOn.

Analyze the result:

4.1. Describe the physical phenomena you see in your animation.

Remark: A lossless electrical transmission line obeys the same equation as the mechanical trans-
mission line considered here. In practice, however, losses need to be considered, because they do
not only produce damping of the waves, but also results in a dispersive wave propagation.

5



5 OPTIONAL task

5.1. Generate an animation showing how a Gaussian pulse propagates in a lossy electrical trans-
mission line (telegrapher’s equation):

u′′(x, t)− LCü(x, t) = (RC +GL)u̇(x, t) +GRu(x, t) , (5)

where the unknown u(x, t) this time represents the voltage. At f = 1 kHz, a telephone
cable has L = 0.61 mH/km and C = 51.6 nF/km, while the losses are R = 172 Ω/km and
G = 0.072 µS/km.
Note 1: Because there is no new term involving a spacial derivative, you do not need to setup
any additional FE-matrix.
Note 2: If you prefer, you can use Matlab’s ode45() function for time stepping.

Submitting your assignment

Hand in your

• code and

• a Results.pdf file with short answers to all questions within this assignment sheet (label each
answer with its task number). All plots you are asked to create should also be contained in
this file at the position of the corresponding task. Animations should be reduced to just one
frame at a “representative” time. You can, for example, use Word or LaTeX to produce the
PDF file.

Upload the above files to the corresponding Assignment section on StudOn:
https://www.studon.fau.de/exc2992793.html.

Important: Make sure that your code executes without need of changes. Executing modal_analysis.m
or transient_analysis.m should yield the solutions and plot the results on any computer running
MATLAB R2019b or newer.

6

https://www.studon.fau.de/exc2992793.html

	Preparation: Galerkin discretization
	FE implementation
	Modal Analysis
	Transient analysis
	OPTIONAL task

