Computing Global System Matrices

- two approaches:
- global approach (integrate over whole domain)
- local/element approach (sum element contributions)

Example: compute the global stiffness matrix K

- entries of the stiffness matrix:

$$
K_{i j}=\int_{a}^{b} N_{i}^{\prime} N_{j}^{\prime} \mathrm{d} x
$$

Diagonal Entry: $K_{33}=\int_{a}^{b} N_{3}^{\prime} N_{3}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

Diagonal Entry: $K_{33}=\int_{a}^{b} N_{3}^{\prime} N_{3}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

Diagonal Entry: $K_{33}=\int_{a}^{b} N_{3}^{\prime} N_{3}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

Diagonal Entry: $K_{33}=\int_{a}^{b} N_{3}^{\prime} N_{3}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

- elements 2 and 3 are involved
- $K_{33}=2$

Off-Diagonal Entry: $K_{34}=\int_{a}^{b} N_{3}^{\prime} N_{4}^{\prime} \mathrm{d} x$
shape functions N_{i}

derivatives N_{i}^{\prime}

Off-Diagonal Entry: $K_{34}=\int_{a}^{b} N_{3}^{\prime} N_{4}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

Off-Diagonal Entry: $K_{34}=\int_{a}^{b} N_{3}^{\prime} N_{4}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

Off-Diagonal Entry: $K_{34}=\int_{a}^{b} N_{3}^{\prime} N_{4}^{\prime} \mathrm{d} x$

shape functions N_{i}

derivatives N_{i}^{\prime}

- element 3 is involved
- $K_{34}=-1$

Stiffness Matrix: $K_{i j}=\int_{a}^{b} N_{i}^{\prime} N_{j}^{\prime} \mathrm{d} x$

- in general:
- $K_{i j} \neq 0$ only where N_{i} and N_{j} overlap
- leads to sparse matrices

Element Stiffness Matrix

- issues with global approach:
- N_{i}^{\prime} is not continuous at the element boundaries
- we have to differentiate and integrate piecewise
- N_{i} needs to be defined per element
- complicated for 2D and 3D
- preferably use reference element (later exercise class)

Element Stiffness Matrix

- issues with global approach:
- N_{i}^{\prime} is not continuous at the element boundaries
- we have to differentiate and integrate piecewise
- N_{i} needs to be defined per element
- complicated for 2D and 3D
- preferably use reference element (later exercise class)
- solution: compute entries element-wise
- split the integral into element contributions

$$
K_{i j}=\int_{\Omega} N_{i}^{\prime} N_{j}^{\prime} \mathrm{d} x=\sum_{e} \underbrace{\int_{\Omega_{e}} N_{i}^{\prime} N_{j}^{\prime} \mathrm{d} x}_{k_{i j}^{e}}
$$

- $k_{i j}^{e}$ is calculated only on each element domain Ω_{e}
- N_{i}, N_{j} are continuously differentiable functions on Ω_{e}
- mapping between element and reference element possible

Reduced Element Stiffness Matrix

Element 2

- element domain $\Omega_{e}=\left[x_{l}, x_{r}\right]$:
- $N_{1}^{e}(x)=\left(x_{r}-x\right) / h$
- $N_{2}^{e}(x)=\left(x-x_{l}\right) / h$
- where $h=x_{r}-x_{I}$ (element size)
- for each element $e, k_{i j}^{e}$ has only 4 non-zero entries.
- reduce to a 2×2-matrix with elements

$$
k_{a b}^{e}=\int_{x_{1}}^{x_{r}} N_{a}^{e \prime} N_{b}^{e^{\prime}} \mathrm{d} x
$$

- assemble: add $k_{a b}^{e}$ to the correct $K_{i j}$

Assembling Procedure

1. initialize $\mathrm{K}=0$ of size $N \times N$
2. for each element e
2.1 compute: $\mathrm{k}^{\mathrm{e}}=\left[k_{a b}^{e}\right]$ of size 2×2
2.2 map: $(a, b) \rightarrow(i, j)$
2.3 add: $K_{i j}=K_{i j}+k_{a b}^{e}$

- the map $(a, b) \rightarrow(i, j)$ is given by mesh. nodesOfElem

Assembling Procedure

1. initialize $\mathrm{K}=0$ of size $N \times N$
2. for each element e
2.1 compute: $\mathrm{k}^{\mathrm{e}}=\left[k_{a b}^{e}\right]$ of size 2×2
2.2 map: $(a, b) \rightarrow(i, j)$
2.3 add: $K_{i j}=K_{i j}+k_{a b}^{e}$

- the map $(a, b) \rightarrow(i, j)$ is given by mesh. nodesOfElem

Example: assemble element 2 into global 4×4-matrix

- get indices of global matrix: ij = mesh.nodesOfElem(2,:)
- yields $\mathrm{ij}=[2,3]$ (elem. 2 is connected to node 2 and 3)
- add $K_{i j}=K_{i j}+k_{a b}^{2}$ (superscript 2: second element) as:

$$
\left[\begin{array}{cccc}
K_{11} & K_{12} & K_{13} & K_{14} \\
K_{21} & \mathrm{~K}_{22}+\mathrm{k}_{11}^{2} & \mathrm{~K}_{23}+\mathrm{k}_{12}^{2} & K_{24} \\
K_{31} & \mathrm{~K}_{32}+\mathrm{k}_{21}^{2} & \mathrm{~K}_{33}+\mathrm{k}_{22}^{2} & K_{34} \\
K_{41} & K_{42} & K_{43} & K_{44}
\end{array}\right]
$$

