Handling Dirichlet Boundary Conditions

- ► assume a 1D-problem with Dirichlet Boundary Conditions (BCs) on both edges of the domain Ω = [a, b] ⊂ ℝ
- two approaches to incorporate Dirichlet BCs:
 - direct: incorporate when setting up the linear system, i.e.,

$$u^{h}(x) = \sum_{j=2}^{N-1} u_{j} N_{j}(x) + u(a) N_{1}(x) + u(b) N_{N}(x)$$

$$v^{h}(x) = \sum_{i=2}^{N-1} v_{i} N_{i}(x) .$$

→ yields system matrices of size N - 2 × N - 2
indirect: ignore when setting up the linear system, i.e.,

$$u^{h}(x) = \sum_{j=1}^{N} u_j N_j(x)$$
$$v^{h}(x) = \sum_{i=1}^{N} v_i N_j(x).$$

 \rightarrow yields system matrices of size $\textit{N} \times \textit{N}$

 \rightarrow Dirichlet BCs still need to be incorporated before solving.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Incorporating Dirichlet BCs

There are two main methods to incorporate the Dirichlet BCs before solving the linear system:

- ► elimination: reduce the N × N system to a N − 2 × N − 2 system for the non-Dirichlet nodes.
- **penalty**: modify the linear system to ensure that the solution of the full $N \times N$ system will satisfy the BCs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

• Let $u_1 = g$ be known due to a Dirichlet BC

Incorporate by:

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} g \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let $u_1 = g$ be known due to a Dirichlet BC
- Incorporate by:
- 1. inserting g into linear system

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{12} & K_{13} \\ K_{22} & K_{23} \\ K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} - \begin{bmatrix} K_{11} \\ K_{21} \\ K_{31} \end{bmatrix} g$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Incorporate by:
- 1. inserting g into linear system
- 2. bringing all knowns (i.e., K_{i1g}) to the right hand side

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{12} & K_{13} \\ K_{22} & K_{23} \\ K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} - \begin{bmatrix} K_{11} \\ K_{21} \\ K_{31} \end{bmatrix} g$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Incorporate by:
- 1. inserting g into linear system
- 2. bringing all knowns (i.e., K_{i1g}) to the right hand side
- 3. removing the redundant equation (equation for node 1)

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{22} & K_{23} \\ K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_2 - K_{21}g \\ f_3 - K_{21}g \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Let
$$u_1 = g$$
 be known due to a Dirichlet BC

- Incorporate by:
- 1. inserting g into linear system
- 2. bringing all knowns (i.e., K_{i1g}) to the right hand side
- 3. removing the redundant equation (equation for node 1)
- 4. final system has one row and one column less

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Let $u_1 = g$ be known due to a Dirichlet BC

Let's solve for it anyway by:

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{11} + p & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Let $u_1 = g$ be known due to a Dirichlet BC

- Let's solve for it anyway by:
- 1. adding a very large number p to K_{11} and

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{11} + p & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 + pg \\ f_2 \\ f_3 \end{bmatrix}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Let $u_1 = g$ be known due to a Dirichlet BC

- Let's solve for it anyway by:
- 1. adding a very large number p to K_{11} and
- 2. adding pg to the corresponding entry of the RHS vector

Linear system (without Dirichlet BCs):

$$\begin{bmatrix} K_{11} + p & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 + pg \\ f_2 \\ f_3 \end{bmatrix}$$

• Let $u_1 = g$ be known due to a Dirichlet BC

Let's solve for it anyway by:

- 1. adding a very large number p to K_{11} and
- 2. adding pg to the corresponding entry of the RHS vector
- 3. solving the modified system

Note: if *p* is large enough, then

$$\begin{array}{ll} (K_{11}+p)u_1+K_{12}u_2+K_{13}u_3\approx pu_1\,,\\ f_1+pg\approx pg \end{array} \Rightarrow pu_1\approx pg$$

- ロ ト - 4 回 ト - 4 □ - 4