Handling Dirichlet Boundary Conditions

- assume a 1D-problem with Dirichlet Boundary Conditions (BCs) on both edges of the domain $\Omega=[a, b] \subset \mathbb{R}$
- two approaches to incorporate Dirichlet BCs:
- direct: incorporate when setting up the linear system, i.e.,

$$
\begin{aligned}
u^{h}(x) & =\sum_{j=2}^{N-1} u_{j} N_{j}(x)+u(a) N_{1}(x)+u(b) N_{N}(x) \\
v^{h}(x) & =\sum_{i=2}^{N-1} v_{i} N_{i}(x)
\end{aligned}
$$

\rightarrow yields system matrices of size $N-2 \times N-2$

- indirect: ignore when setting up the linear system, i.e.,

$$
\begin{aligned}
u^{h}(x) & =\sum_{j=1}^{N} u_{j} N_{j}(x) \\
v^{h}(x) & =\sum_{i=1}^{N} v_{i} N_{j}(x) .
\end{aligned}
$$

\rightarrow yields system matrices of size $N \times N$
\rightarrow Dirichlet BCs still need to be incorporated before solving.

Incorporating Dirichlet BCs

There are two main methods to incorporate the Dirichlet BCs before solving the linear system:

- elimination: reduce the $N \times N$ system to a $N-2 \times N-2$ system for the non-Dirichlet nodes.
- penalty: modify the linear system to ensure that the solution of the full $N \times N$ system will satisfy the BCs.

Example: Elimination of one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Incorporate by:

Example: Elimination of one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
g \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Incorporate by:

1. inserting g into linear system

Example: Elimination of one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{ll}
K_{12} & K_{13} \\
K_{22} & K_{23} \\
K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]-\left[\begin{array}{l}
K_{11} \\
K_{21} \\
K_{31}
\end{array}\right] g
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Incorporate by:

1. inserting g into linear system
2. bringing all knowns (i.e., $K_{i 1} g$) to the right hand side

Example: Elimination of one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{ll}
K_{12} & K_{13} \\
K_{22} & K_{23} \\
K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]-\left[\begin{array}{l}
K_{11} \\
K_{21} \\
K_{31}
\end{array}\right] g
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Incorporate by:

1. inserting g into linear system
2. bringing all knowns (i.e., $K_{i 1} g$) to the right hand side
3. removing the redundant equation (equation for node 1)

Example: Elimination of one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{ll}
K_{22} & K_{23} \\
K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{2}-K_{21} g \\
f_{3}-K_{21} g
\end{array}\right] \stackrel{\operatorname{def}}{=}\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Incorporate by:

1. inserting g into linear system
2. bringing all knowns (i.e., $K_{i 1} g$) to the right hand side
3. removing the redundant equation (equation for node 1)
4. final system has one row and one column less

Example: Penalty approach for one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Let's solve for it anyway by:

Example: Penalty approach for one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{ccc}
K_{11}+p & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Let's solve for it anyway by:

1. adding a very large number p to K_{11} and

Example: Penalty approach for one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{ccc}
K_{11}+p & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
f_{1}+p g \\
f_{2} \\
f_{3}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Let's solve for it anyway by:

1. adding a very large number p to K_{11} and
2. adding $p g$ to the corresponding entry of the RHS vector

Example: Penalty approach for one Dirichlet node

- Linear system (without Dirichlet BCs):

$$
\left[\begin{array}{ccc}
K_{11}+p & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
f_{1}+p g \\
f_{2} \\
f_{3}
\end{array}\right]
$$

- Let $u_{1}=g$ be known due to a Dirichlet BC
- Let's solve for it anyway by:

1. adding a very large number p to K_{11} and
2. adding $p g$ to the corresponding entry of the RHS vector
3. solving the modified system

Note: if p is large enough, then

$$
\begin{aligned}
\left(K_{11}+p\right) u_{1}+K_{12} u_{2}+K_{13} u_{3} & \approx p u_{1}, \\
f_{1}+p g & \approx p g
\end{aligned} \quad \Rightarrow \quad p u_{1} \approx p g
$$

