CAE of Sensors and Actuators
Date: November 2020

Lehrstuhl für Sensorik
Universität Erlangen-Nürnberg
Daniel Kiefer

Exercise sheet 1

In the following we denote with u the scalar dependent variable, x, y, z shall be the independent variables, u^{\prime} the derivative with respect to x and f is the excitation. Furthermore, \ddot{u} denotes the second time derivative of u, c is a constant and Ω is the domain of the boundary value problem (BVP). The boundary of the domain is $\partial \Omega$ and it splits into the Dirichlet boundary Γ_{D} and the Neumann boundary Γ_{N} such that $\Gamma_{D} \cup \Gamma_{N}=\partial \Omega$ and $\Gamma_{D} \cap \Gamma_{N}=\emptyset$.

Given the strong form, derive the corresponding weak form of the following boundary value problems:

1. Example 1

$$
\begin{aligned}
& u^{\prime \prime}=f \quad \text { on } x \in \Omega=(a, b) \\
& u(a)=g_{a} \\
& u(b)=g_{b}
\end{aligned}
$$

2. Example 2

$$
\begin{aligned}
& -u^{\prime \prime}+c u=f \quad \text { on } x \in \Omega=(a, b) \\
& u(a)=g_{a} \\
& \left.u^{\prime}\right|_{b}=h_{b}
\end{aligned}
$$

3. Example 3

$$
\begin{aligned}
& -u^{\prime \prime}+c u^{\prime}=f \quad \text { on } x \in \Omega=(a, b) \\
& u(a)=g_{a} \\
& u(b)=g_{b}
\end{aligned}
$$

4. Example 4

$$
\begin{aligned}
& -\ddot{u}+u^{\prime \prime}+c u=f \quad \text { on } x \in \Omega=(a, b) \\
& u(a)=g_{a} \\
& u(b)=g_{b}
\end{aligned}
$$

5. Example 5

$$
\begin{aligned}
& -\Delta u+c u=f \quad \text { on } \vec{x}=(x, y)^{T} \in \Omega \\
& \left.u(x, y)\right|_{\Gamma_{D}}=g_{D} \\
& \left.\frac{\partial u}{\partial \vec{n}}\right|_{\Gamma_{N}}=\left.\nabla u \cdot \vec{n}\right|_{\Gamma_{N}}=h_{N}
\end{aligned}
$$

Solutions

Using test function v :

1. Example 1

$$
\begin{aligned}
& -\int_{a}^{b} v^{\prime} u^{\prime} \mathrm{d} x=\int_{a}^{b} v f \mathrm{~d} x \\
& \text { with DBC: } u(a)=g_{a}, \quad u(b)=g_{b}
\end{aligned}
$$

2. Example 2

$$
\begin{aligned}
& \int_{a}^{b} v^{\prime} u^{\prime} \mathrm{d} x+\int_{a}^{b} c v u \mathrm{~d} x=\int_{a}^{b} v f \mathrm{~d} x+v(b) h_{b} \\
& \text { with DBC: } u(a)=g_{a}
\end{aligned}
$$

3. Example 3

$$
\begin{aligned}
& \int_{a}^{b} v^{\prime} u^{\prime} \mathrm{d} x+\int_{a}^{b} c v u^{\prime} \mathrm{d} x=\int_{a}^{b} v f \mathrm{~d} x \\
& \text { with DBC: } u(a)=g_{a}, \quad u(b)=g_{b}
\end{aligned}
$$

4. Example 4

$$
-\int_{a}^{b} v \ddot{u} \mathrm{~d} x-\int_{a}^{b} v^{\prime} u^{\prime} \mathrm{d} x+\int_{a}^{b} c v u \mathrm{~d} x=\int_{a}^{b} v f \mathrm{~d} x
$$

$$
\text { with DBC: } u(a)=g_{a}, \quad u(b)=g_{b}
$$

5. Example 5
$\int_{\Omega} \nabla v \cdot \nabla u \mathrm{~d} \Omega+\int_{\Omega} c v u \mathrm{~d} \Omega=\int_{\Omega} v f \mathrm{~d} \Omega+\int_{\Gamma_{N}} v h_{N} \mathrm{~d} \Gamma$ with DBC: $\left.u(x, y)\right|_{\Gamma_{D}}=g_{D}$
