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Assignment 3: Mechanical Field – Cantilever Beam

In Fig. 1, the setup of a cantilever beam made of steel is shown. The cantilever is fixed at its left hand
side to a solid wall and is allowed to bend freely at the right hand side. The aim of this assignment
is to characterize the mechanical behavior of this beam by means of numerical simulations.
In the following, we can assume that the length l is much greater than both the depth d and the
height h of the beam. The depth d lies roughly in the order of the height h, i.e. the cantilever has
roughly a square y-z-cross-section. Furthermore, the beam shall only be loaded with forces acting in
x- or y-direction, i.e. no force acting into z-direction is to be expected. Under these circumstances,
we can reduce the 3D model of the beam to a representative 2D model given by the x-y-cross-section.
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Figure 1: Cantilever beam fixed at its left hand side. The x-y-cross-section is colored in gray.

Consider the following dimensions for the geometry of Fig. 1:

• length l = 0.8 m

• height h = 0.012 m

• depth d = 0.02 m

General hints and remarks

Please make sure to:

• Save all relevant plots you generate (e.g., as png-file) while working on the assignment.

• Always label the axes of the plots and add a legend if necessary.

• Format your plots so that they can be read easily (e.g., appropriate font size).

• Prepare a Results.pdf file with the plots and short answers to all questions (label each answer
with its task number) for submission.

• If you are unsure on how to perform the tasks, refer to

– Comsol Tutorial: Electrostatic Field

– COMSOL Multiphysics Reference Manual
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https://www.studon.fau.de/file2770736_download.html
https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf


1 Preparation

1.1. The geometry can be simplified to 2D, yielding significantly faster computations. For the
given values of h, d and l, what mechanical 2D model can be used (plane strain, plane stress
or axi-symmetric)?

1.2. Consider the analytic formula for the estimation of the first three bending modes (bending
eigenfrequencies) for bending around the z-axis of the cantilever shown in Fig. 1 (see Parkus:
”Mechanik der festen Körper”, Springer, 1995):

ωi = γ2i

√
EJz
ρA

. (1)

Thereby, ωi stands for the angular eigenfrequency, E for the elasticity modulus (Young’s
modulus), Jz for the second area moment belonging to the z-axis (Jz = dh3/12), ρ for the
density and A for the y − z−cross-section. Additionally, γi is a correction-constant given as

γ1l = 1.875 ,

γ2l = 4.694 ,

γ3l = 7.855 (2)

for the first three eigenfrequencies.
Combine (1) with (2) and the given information to derive a formula for the actual eigenfre-
quencies f1 = ω1/(2π), f2 and f3. These formulas shall only depend on the product γil as
well as l, h, d, E and ρ (one of these parameters will cancel out). Write the derived formula to
Results.pdf.

2 Modeling

2.1. Use the Model Wizard to create a new 2D model. Add a Structural Mechanics → Solid

Mechanics physics. This physics solves Navier’s equations in 3D or 2D. Pick the Eigen-
frequency study before concluding with the wizard. Note: you could instead add all of those
nodes manually, if you prefer.

2.2. Make sure that the geometric parameters l, h and b, as well as the mesh’s element size in x-
and y-direction (hx, hy) can be adapted easily by defining them as parameters. Note: h is a
reserved name in COMSOL and you can’t use it as a parameter name. It is a good practice
to use longer parameter names (e.g., h_cant) in order to avoid conflicts with reserved variable
names.

2.3. Model the relevant cross-sectional area as shown in Fig. 1.

2.4. Go to your physics node (Solid Mechanics (solid)) and make sure that you are using the
correct mechanical 2D approximation.

2.5. The depth d of the cantilever is not modeled in the 2D geometry. Some quantities, however,
scale with d, e.g., the total stored elastic energy. In order to consider this scaling, set the value
for d in the Solid Mechanics (solid) node under the Thickness section (d).

2.6. What type of shape functions are set by default? → physics node, Discretization section.

2.7. How many dependent variables are we considering for the mechanical simulation and how are
these variables denoted in COMSOL? → physics node, Dependent Variables section.

2.8. Add the material Built In → Structural steel to your component. Assign it to all do-
mains.

2.8.1. What is the value of the Young’s modulus (E) of this material?

2.8.2. What is the density ρ of the material?
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2.9. The Solid Mechanics (solid) → Linear Elastic Material 1 node adds the PDEs that
are to be solved.

2.9.1. What variable name is being used for the mechanical strain?

2.9.2. What variable name is being used for the mechanical stress?

2.9.3. What variable name is being used for the stiffness tensor?

2.9.4. What equation is being solved for?

2.9.5. In COMSOL, the eigenvalue is denoted with λ. How does it relate to the angular eigen-
frequency ω?

2.10. The default boundary conditions (BCs) are set by the Free 1 node. What kind of BC is this?
Why is the node called Free in COMSOL?

2.11. Add any further boundary conditions that are necessary to model the cantilever beam.

2.12. Use a Mapped Mesh with quadrilateral elements of size hx × hy.

2.12.1. Add a Mapped node to your Mesh 1 node. Apply it to the Entire geometry.

2.12.2. Add a Distribution node to the Mapped 1 node and apply it to one of the horizontal
lines of your geometry. Select Fixed number of elements as Distribution type and set the
Number of elements to l/hx.

2.12.3. Add a second Distribution node to the Mapped 1 node and apply it to one of the
vertical lines of your geometry. Select Fixed number of elements as Distribution type and
set the Number of elements to h/hy.

2.12.4. Build the mesh and make sure that you obtained a nicely structured mesh.

3 Eigenfrequency/Modal analysis

3.1. Apply the analytic formula, which you derived, to estimate the first three eigenfrequencies of
the assembly from Fig. 1 using the given set of parameters. The required material data has
been extracted in task 2.8. You can do the computations in Matlab, as you will be using the
results in task 3.8. again. Please write the three calculated eigenfrequencies into Results.pdf.

3.2. Do you need an excitation to perform an eigenfrequency analysis? Why?

3.3. Perform a mechanical eigenfrequency analysis for the values hx = 8 mm and hy = 2 mm. The
simulation should only take a few seconds. COMSOL will automatically plot the Mode Shape

for the first eigenfrequency f1. The value of f1 can be read off in the Data section of the plot.
Inspect the fist three mode shapes of the cantilever beam.

3.4. How many eigenfrequencies does the cantilever have in theory? Why? How many have been
calculated by COMSOL? Hint: the Data section in the Mode Shape plot shows all computed
eigenfrequencies.

3.5. In our analysis we are only considering the first three modes. Go to the Study 1 → Step 1:

Eigenfrequency node and set the Desired number of eigenfrequencies to 3. This setting will
speed up your simulation.

3.6. Perform a parameter study for:

3.6.1. linear elements with hx = 2 mm, 4 mm, 8 mm, 16 mm, 32 mm.

3.6.2. quadratic elements (Serendipity) of the same size as above (task 3.6.1.).

Note: keep hy = 2 mm constant for the above simulations.

3.7. Export the resulting first eigenfrequency from 3.6.1. and 3.6.2. to MATLAB:
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3.7.1. Right click on Derived Values and choose Global Evaluation. In the settings windows
select the Study 1/Parametric Solutions 1 data set and as Eigenfrequency selection choose
First. In the Table columns drop-down menu select Inner solutions. Under the Expres-
sions section add Solver → freq - Frequency. Finally, click on Evaluate at the very top.
This will create a Table 1 node as a child of the Tables node. Every time you evaluate,
COMSOL will add a column to your table, so make sure to click only once. Otherwise,
you will need to delete the Table 1 first.

3.7.2. Right click on Table 1 and select Add Table to Export. Make sure to unselect the Include
header check-box, then click on Export at the very top.

3.7.3. Import the data to Matlab by clicking on Import. The data is delimited by space. Prefer-
ably, use Numeric Matrix as Output Type. Select only the cells which contain the fre-
quency values.

3.8. In Matlab, calculate the relative deviation erel,i between your simulated eigenfrequencies (fsim)
and the analytic estimations (fanalytic) from task 3.1. Use the following formula to compute
the relative deviation

erel =
fsim − fanalytic

fanalytic
, (3)

for the first eigenfrequency. Perform this calculation for all five simulations with linear shape
functions as well as for all five simulations with quadratic shape functions. Gather the cal-
culated values of erel for both cases (linear and quadratic shape functions) and create two
semi-logarithmic (semilogy in MATLAB: y−axis logarithmic, x−axis linear) graphs show-
ing erel versus hx. Plot both graphs to the same figure and do not forget to label the figure
correctly (including a legend to determine which graph belongs to linear and quadratic shape
functions). For help plotting in Matlab, you can type help semilogy at the Matlab prompt,
or refer to the Matlab tutorial linked on StudOn. Remember to save the plot to a png-file for
submission.

3.9. What can you observe regarding the relative deviation between analytic and numerical so-
lution? Is there a difference between linear and quadratic shape functions? If yes, what
numerical effect is responsible for it?

3.10. What is the smallest relative deviation in percent that you were able to achieve? What are
the reasons for this discrepancy?

4 Transient analysis - Time step study

In the following, use elements of size hy = 2 mm, hx = 8 mm with quadratic shape functions.

4.1. Excite the cantilever by applying a force in y-direction at the upper right tip marked in Fig. 1.
The time-dependent force should consist of a sinusoidal burst with the following properties:

• amplitude Aexc: 1 N

• frequency fexc: 125 Hz

• number of periods Nperiods: 3.

4.1.1. Define Aexc, fexc and Nperiods as parameters.

4.1.2. The above dependence on time t can be modeled by windowing a sin-function. Add
a Rectangle-function to your Global node and set the parameters correctly (do not
smooth). This function will be used as window function.

4.1.3. Add an Analytic-function to your Global node and set its argument variable name to t.
This shall be the exciting function. For Expression enter Aexc*rect1(t/1[s])*sin(2*pi*fexc*t).
Comsol knows the constant value of pi = π. Set the argument and the units appropri-
ately. Plot this function from 0 s to 0.32 s and verify that you obtain a sin-burst with
three periods.
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4.1.4. Add a Point Load node to your physics and apply it to the upper right tip point marked
in Fig. 1. Enter an1(t), which is your function defined in 4.1.3., as time-dependent value
of the y-component of the force. The variable t is a global variable in COMSOL which
represents time.

4.2. Add a new Study to your COMSOL project: right click the root node→ Add Study → double
click Time Dependent. This study can be computed independently from previously configured
studies.

4.3. Select Study 2 → Step 1: Time Dependent. Change the time unit to ms. In the Times
field, enter the points at which to simulate. Simulate a total of Tend = 320 ms with a total of
Nsteps = 1600 time steps.

4.4. The time points specified in task 4.3. are actually the time points at which COMSOL will save
the results. This does not necessarily correspond to the points taken by the time stepping
algorithm (the numerical solver). Change this behavior by:

4.4.1. Right clicking on Study 2 and selecting Show Default Solver.

4.4.2. Disclosing the Solver Configurations → Solution x and selecting Time-Dependent Solver 1.
Under General → Times you could explicitly specify the time points that the solver should
take. Instead, force the solver to take at least the same steps as specified in task 4.3. For
this purpose, disclose Time Stepping and set Steps taken by solver to Strict.

4.5. Compute Study 2. This should take some seconds.

4.6. Animate the result: right click Export and select Animation → Player. Choose appropriate
settings and view your simulation result. Does the vibration stop after the excitation? Why?
Hint: Your result is correct if the vibration consists in a superposition of the mode structures
you inspected in task 3.3.

4.7. Perform a parametric sweep on Nsteps with the values: 200, 400, 800, 1600, 3200.

4.8. Plot a series of curves showing the y-component of the displacement at the upper right tip
over time t. Which is the smallest value of Nsteps that yields converged results?

5 Fourier Transform of the Time Step Study

5.1. The time domain signal is difficult to interpret. Calculate the Fourier transform of the y-
displacement at the upper right tip. You can do this in COMSOL with a new Study using the
following procedure:

5.1.1. Add a new Time-Dependent Study (each study can be computed separately and you can
have as many as you like).

5.1.2. Add to this Study 3 node a Time to Frequency FFT study step by right clicking the
node and selecting→ Study Steps → Frequency Domain → Time to Frequency FFT. The
two study steps will be performed one after another.

5.1.3. Adjust the settings of the Time to Frequency FFT study step:

• Time unit → ms,

• End time → Tend,

• Maximum output frequency → 300 Hz.

5.1.4. Set the steps to be taken by the solver as in 4.4.

5.2. Compute the Study 3 which you just set up with Nsteps = 1600.

5.3. Plot the magnitude spectrum: Add a 1D Plot Group, then add a Point Graph to it and choose
the upper right tip. Choose the Data set that corresponds to the frequency domain data. Plot
abs(v) over the frequency. You should see some peaks in the plotted spectrum.
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5.4. The resolution of the Fourier transform is not good. You can increase the resolution by
increasing the length of the time domain signal using zero-padding. Go back to the Step 2:
Time to Frequency FFT node settings. Increase the End time to 5*Tend. Additionally, check
the Use window function checkbox, choose a Hanning window and let the window end at Tend.

5.5. Right click the Step 2 node and select Compute Selected Step to re-compute just the Fourier
transform.

5.6. Go back to your Point Graph plot with the magnitude spectrum. The graph should be
much smoother now. Where are the maxima located? Compare this to the eigenfrequencies
computed previously.

Note: The Fourier transform shows that the vibration of the cantilever excited with the sin-burst
can be interpreted as a superposition of its modes.

Submitting your assignment

Hand in your group’s

• COMSOL mph-file (clear all meshes and results beforehand, see the COMSOL Tutorial), and

• Results.pdf file with the plots and short answers to all questions (label each answer with its
task number),

before the due date by uploading to the corresponding StudOn section.

When handing in for the first time you need to create a group. Please add all members when
doing so! Once the group has been create, you can and should re-use the group for the subsequent
submissions.
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