
CAE of Sensors and Actuators
Date: December 2020
Assignment due: February 3rd, 2021 at 23:55

Lehrstuhl für Sensorik
Universität Erlangen-Nürnberg
Daniel Kiefer

Assignment 0: FEM Implementation – Part 2

In Assignment 0 – Part 1 you created a Finite Element code which solves the steady-state heat
equation in 1D. The general boundary value problem (BVP) is given by

−ku′′ = f on x ∈ Ω = [a, b] (1a)

u(x) = g(x) on x ∈ ΓD ⊂ ∂Ω (1b)

(u′n)|x = h(x) on x ∈ ΓN ⊂ ∂Ω , (1c)

where ΓD and ΓN denote the Dirichlet and Neumann boundaries, respectively. u′n is the normal
derivative in 1D, where n represents the “unit normal to the boundary”, i.e., n = 1 at x = b and
n = −1 at x = a.

In this assignment you will extend your Finite Element code

• to support non-equidistant meshes,

• to handle general forcing functions f(x), and

• implement general Dirichlet and Neumann boundary conditions (BCs).

Note: For many of the tasks you can re-use/adapt solutions of Assignment 0 – Part 1. You should
do this whenever you consider it convenient.

General hints and remarks

Please make sure to:

• Save all relevant plots you generate (e.g., as png-file) while working on the assignment.

• Always label the axes of the plots and add a legend if necessary.

• Format your plots so that they can be read easily (e.g., appropriate font size).

• Prepare a Results.pdf file with the plots and short answers to all questions (label each answer
with its task number) for submission.

• If you are unsure on how to perform the tasks, refer to

– The Octave tutorial linked on StudOn

– The first part of the assignment

– The exercise notes

1



1 Preparation: Galerkin discretization

1.1. Write down the weak form of the BVP (1).

1.2. Perform a Galerkin discretization of the resulting weak form. Thereby, do not consider the
BCs directly. Instead, use the ansatz

uh(x) =

N∑
j=1

Nj(x)uj

vh(x) =

N∑
i=1

Ni(x)vi

for the test function vh(x) and the trial function uh(x). You should end up with an expression
similar to exercise sheet 2, problem 2.

2 Preparation: Isoparametric Finite Elements

In Part 1 we computed the stiffness matrix and forcing vector as a sum of integrals over the element
domains. Thereby, you relied on the fact that we were using a regular mesh, where all the elements
had the same size and shape. With an irregular mesh, however, each of the integrals has a different
integration domain, which would require a different treatment of each of the elements. To avoid
this difficulty, in practice the elements are mapped onto a so-called reference or parent element and
the integration is then performed in a local coordinate system. Such a procedure is well suited
for computer implementation because the mapping can be performed automatically. The system
matrices are then obtained with the following steps:

• Define a map Fe : Ω̂→ Ωe, which maps the local coordinate ξ ∈ Ω̂ of the reference element to
the global coordinate x ∈ Ωe.

• Express the global derivatives ∂
∂x in terms of the local coordinate derivatives ∂

∂ξ .

• Express all functions appearing in the integrals in terms of the local coordinate.

• Integrate on the reference element Ω̂.

For our 1D case:

2.1. Write down the isoparametric ansatz for the mapping Fe.

2.2. Compute the corresponding linear basis functions N̂a(ξ) for the reference element.

2.3. Determine the Jacobi matrix Je, as well as J−Te and det Je.

2.4. Transform N ′a(x) = ∂Na(x)
∂x to local coordinates, i.e., ∂N̂a(ξ)

∂ξ . Do the same for N ′b(x).

2.5. The entries keab of the element stiffness matrix have been derived in Part 1 of the assignment
and are given in terms of the global coordinate x as

keab(x) = k

∫
Ωe

N ′a(x)N ′b(x) dx . (2)

Transform keab(x) to the reference element Ω̂. Make sure, that the expression you obtain

depends only on N̂a(ξ), ∂
∂ξ , Je and k.

2.6. Transform the forcing function f(x) to the local coordinate ξ. Denote the transformed function

as f̂(ξ).

2



2.7. The entries fea of the element force vector are determined in global coordinates by

fea(x) =

∫
Ωe

f(x)Na(x) dx . (3)

Transform fea(x) to the reference element Ω̂. Make sure, that the expression you obtain

depends only on N̂a(ξ), Je and f̂(ξ).

3 Implementing the isoparametric FE with numerical integration

You will implement this version of your FE code based on your implementation of Assignment 0,
Part 1. Move your previous code into a subfolder called part1. Then duplicate this folder and
name it part2. You should now have two folders with the exact same code. For this part of the
assignment, you will be doing all the work in the part2 folder.

3.1. Implement the function Je = jacobi(mesh, elem) in the file jacobi.m which computes the
Jacobi matrix (of size 1× 1 for the 1D case) of the element elem. Use the mesh structure that
you generated in Part 1 of the assignment.

3.2. Rename your fem_equidistant_hdbc.m to fem_main.m.

3.3. Define the basis functions N̂a(ξ) as anonymous functions in your fem_main.m. It might be
convenient to collect them in a cell array, e.g.,
N = {@(xi) 1 - xi; @(xi) xi};

Make sure to familiarize yourself with anonymous functions and cell arrays before continuing.

3.4. Test your definition of the basis functions:

3.4.1. Create a vector xi by sampling the interval [0, 1] ten times.

3.4.2. Plot N1(ξ) and N2(ξ) into one figure using the anonymous functions defined in task 3.3.
and the vector xi.

3.5. Similarly, define the derivatives ∂N̂a(ξ)
∂ξ as (a cell array of) anonymous functions in your Matlab

code. As these functions need to support vector arguments, we need to make sure to return a
vector of the same size as the argument. This can be achieved in the following way:
Nxi = {@(xi) -1*ones(size(xi)); @(xi) 1*ones(size(xi))};

3.6. Test your basis function derivatives defined above as done for the basis functions in task 3.4.

Note: You can later call, e.g., the basis function N1 by typing N{1}() and passing the argument in
the parenthesis, if necessary.

3.7. Edit the elementStiffness() function from Part 1. It should now have the signature
ke = elementStiffness(Nxi, Je), where the arguments are the vector of local derivatives Nxi
of the reference shape functions and the Jacobi matrix Je. This function should

3.7.1. Compute det Je. Hint: Matlab determinant is det().

3.7.2. Compute J−Te . Hint: Matlab transpose is .’, Matlab inverse is inv().

3.7.3. Allocate memory for the element stiffness matrix ke.

3.7.4. Compute each of the entries keab of the matrix ke by performing a numerical integration on
the reference element. You can use the Matlab function integral() for the integration
procedure. You might need to define first the integrand as an anonymous function and
then pass that as an argument to the integral() function. Be aware that all your
anonymous functions should support vector arguments, i.e., use point-wise multiplication
in their definition. Refer to task 2.5. for the expression of keab.

3.8. Test your elementStiffness() function. Is it returning the same matrix as you computed
by hand in Part 1 of the assignment?

3

https://de.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html
https://de.mathworks.com/help/matlab/matlab_prog/what-is-a-cell-array.html
https://de.mathworks.com/help/matlab/ref/times.html


3.9. Define f(x) = 1 as an anonymous function of the argument x in your Matlab code. Make sure
that it supports vector arguments and returns vectors of the same size (as in task 3.5.).

3.10. Create a new function fhat = toLocalCoord(f, N, mesh, elem) in the file toLocalCoord.m.
It should transform given function f from global coordinates x to local coordinates ξ. The
returned variable fhat is an anonymous function of the argument xi. Refer to task 2.6. on
how to do this.

3.11. Edit the elementForce() function. The new signature should be
fe = elementForce(N, Je, fhat), where the arguments are the vector of reference shape
functions N, the Jacobi matrix Je, as well as the forcing function fhat in local coordinates.
This function should

3.11.1. Compute det Je.

3.11.2. Allocate memory for the element force vector fe.

3.11.3. Compute each of the entries fea of the vector fe. Do this by performing a numerical
integration on the reference element. Refer to task 2.7. for the expression of fea .

3.12. Test your elementForce() function. Is it returning the same vector as you computed by hand
in Part 1 of the assignment?

4 Adapting the assembling procedure

Change the assembling procedure in your fem_main.m file in order to use the new functions. When
iterating over the elements:

4.1. Compute the Jacobi matrix for the current element Je.

4.2. Transform functions to local coordinates (only necessary when assembling the force vector).

4.3. Calculate the element matrix/vector by calling your newly created function.

4.4. Add the element matrix/vector to the correct position in the global matrix/vector. This is
exactly the same as in Part 1 of the assignment.

5 Testing

Test your implementation with an irregular mesh first. Your results should coincide with your results
from part 1 of this assignment.

5.1. Test your implementation with an irregular mesh of your choice. You need to adapt your
generateMesh() function for this purpose. If your domain is Ω = [a, b] ⊂ R, you could for
example use the Chebyshev points

xk = a+
b− a

2

(
1− cos

(
π
k

n

))
, with k ∈ [0...n], and n the number of elements . (4)

The above points are denser close to the domain boundaries than in the interior and are often
used for numeric purposes. Plot your result and save it as a .png file.

5.2. Because you are performing a numerical integration to calculate the forcing vector, you should
now be able to solve the BVP for any excitation f(x). Test your implementation with

f(x) = sin2

(
πx

(b− a)

)
, (5)

where [a, b] ⊂ R is your 1D domain. Plot your result and save it as a .png file. You solution
should be slightly different to your result with f(x) = 1.

4



6 Implementing inhomogeneous Dirichlet BCs

In Part 1 of the assignment, you implemented homogeneous Dirichlet BCs. We will now extend the
code for inhomogeneous Dirichlet BCs by applying elimination.

Note: You can refer to slides_dirichlet_node_handling.pdf on how this works. You can also
refer to exercise sheet 2, problem 1 for help.

6.1. In fem_main.m, define a vector g which contains the two Dirichlet values u(a) and u(b). Set
them to 1 and -0.5, respectively.

6.2. After assembling the global forcing vector F, define a right hand side vector RHS which shall
contain not only the forcing, but also the contribution of the BCs. For now, initialize RHS

simply with F.

6.3. Now, incorporate the Dirichlet contributions Ki1g1 and Ki1g1 by subtracting them from the
RHS vector. This is shown in slides_dirichlet_node_handling.pdf.

6.4. After allocating memory for the solution vector u, set the boundary values to the known
Dirichlet values g.

6.5. Solve the system as before and plot the solution. Are the Dirichlet conditions fulfilled? Save
your plot as a .png file.

7 Implementing Neumann BCs

You can refer to exercise sheet 2, problem 2 for help on how to consider Neumann BCs. The
corresponding contribution to the right hand side vector should appear in your computed weak
form.

7.1. In fem_main.m, define a vector h which contains the Neumann values u′n|∂Ω. Set them to
whatever values you want.

7.2. Adjust mesh.nodesOfDBC to correctly represent on which node you want to impose the Dirich-
let BC. When applying only Neumann BCs, it should be an empty vector, i.e., [].

7.3. Define mesh.nodesOfNBC to be the Neumann boundary nodes. setdiff() might be a useful
function for this, but you are not required to use it.

7.4. Incorporate the Neumann BCs to the vector RHS by adding the Neumann contributions which
appear in your weak form of task 1.1.

7.5. Solve the system for the non-Dirichlet nodes as before.

If you implemented Neumann BCs on both boundary nodes, Matlab will warn you that your matrix
is singular during the solution procedure. Why is that? Implement a homogeneous Dirichlet BC on
one node and a homogeneous Neumann BC on the other node:

7.6. Adjust the vector of Dirichlet values and Neumann values appropriately.

7.7. Adjust mesh.nodesOfDBC and mesh.nodesOfNBC.

7.8. Solve the resulting system of equations and plot the solution. Are the desired boundary
conditions fulfilled? Save your plot as a .png file.

5



Submitting your assignment

Hand in your group’s

• code and

• a Results.pdf file with the plots and short answers to all questions (label each answer with
its task number),

before the due date by uploading to the corresponding StudOn section.

When handing in for the first time you need to create a group. Please add all members when doing
so! Once the group has been create, you can and should re-use it for the subsequent submissions.

Important: Make sure that your code executes without need of changes. Executing fem_main.m

should yield the computed solution and plot the results on any computer running the current version
of Octave/MATLAB.

6


	Preparation: Galerkin discretization
	Preparation: Isoparametric Finite Elements
	Implementing the isoparametric FE with numerical integration
	Adapting the assembling procedure
	Testing
	Implementing inhomogeneous Dirichlet BCs
	Implementing Neumann BCs

