Untersuchung von codierten Ansteuersignalen hinsichtlich der axialen Auflösung in der ultraschallbasierten Bildgebung

Daniel Kiefer

Masterarbeit Lehrstuhl für Sensorik

Betreuer: M. Sc. Michael Fink Dr. techn. Stefan J. Rupitsch

Erlangen, 27. April 2016

Inhalt

- Einleitung
 - Motivation
 - Modell der Platte
- Axiale Auflösung

- Ansteuersignale
- Konditionierung zur Erhöhung der axialen Auflösung

Pulskompressionsverfahren

Messergebnisse

Lehrstuhl für Sensorik

Motivation

Aufgabe: Dicke *d* und Schallgeschwindigkeit *c* der Platte *simultan* bestimmen

- Referenzmessung: $c_{
 m w}$, $t_{
 m w} = L/c_{
 m w}$
 - bestimme: t_0 , T = 2d/c

Modell der Platte

Modell im Zeitbereich

• Ankunftszeit des direkt transmittierten Schalls *t*₀

• Verzögerung zwischen den Mehrfachreflexionen *T*

Modell im Frequenzbereich

Lehrstuhl für Sensorik

SE

Die axiale Auflösung

ISE

7 / 32

Verbesserung der axialen Auflösung

durch Wahl von:

Ansteuersignal s(t) + Signalverarbeitung

Anforderungen an das Interrogationssignal g(t)

- hohe *Bandbreite* da $\Delta t \approx \frac{1}{B_{rr}}$
- hohe *Energie* für gutes SNR
 - Amplitude
 - Zeitdauer D
 - Bandbreite B

Ansteuersignale s(t)

Pulse

- B groß
- D gering
 - \rightarrow SNR niedrig

codierte Ansteuersignale

- hohes Zeit-Bandbreite-Produkt DB \rightarrow gutes SNR
- frequenz- / phasenmoduliert
- D groß: Pulskompression erforderlich

Chirpsignal

- linear frequenzmoduliertes Signal
- Dauer D

- Bandbreite $B \approx \Delta f$
- Chirprate $\Omega = 2\pi \frac{\Delta f}{D}$

5

Konditionierung von Ansteuersignalen

$$g(t) = s_{c}(t) * h_{T}(t) = s(t) * h_{c}(t)$$

$$\int_{O}^{O} G(f) = S_{c}(f)H_{T}(f) = S(f)H_{c}(f)$$

$$\Rightarrow \quad S_{\rm c}(f) = \frac{S(f)H_{\rm c}(f)}{H_{\rm T}(f)}$$

Wiener-Filter zur Entfaltung:

$$S_{\rm c}(f) pprox S(f) H_{\rm c}(f) rac{H_{
m T}^*(f)}{|H_{
m T}(f)|^2 + |H_{
m T}(f)|^{-2}}$$

Abbildung: h_c durch Hanning-Fensterung von h_T

Abbildung: Chirpsignal mit $f_{\rm M}=2,4$ MHz, B=3,0 MHz, $D=60\,\mu s$ und Tukey-Fenster

Abbildung: zugehörige Interrogationssignale

Lehrstuhl für Sensorik

Energiedichtespektra der Interrogationssignale g, g_c

Pulskompression

"Not with a Bang, but a Chirp" - B. M. Oliver (Bell Lab. Mem. 1951)

<u>|</u>SE

Sendesignal s(t)

Pulskompressionsfilter

• Korrelationsfilter (signalangepasstes oder konjugiertes Filter)

$$K(f) = G^*(f)$$

mismatched Filter

$${\mathcal K}(f)={\mathcal W}(f){\mathcal G}^*(f)$$
, mit Fensterfunktion ${\mathcal W}(f):{\mathbb R} o{\mathbb R}$

Wiener-Filter

$$K(f) = \frac{G^*(f)}{|G(f)|^2 + 1/\text{SNR}(f)}$$

• Fraktionale Fourier-Transformation

Vergleich der axialen Auflösung

Abbildung: Komprimierte Signalformen für drei verschiedene Stahlplatten

Lehrstuhl für Sensorik

Gemessene Dicke von Stahlplatten

Relative Abweichung zur Referenz in Prozent

Gemessene Schallgeschwindigkeit in Stahlplatten

¹Joseph L. Rose. *Ultrasonic Waves in Solid Media*. Cambridge University Press, 2004. ISBN: 978-0-521-54889-2, S. 44.

Daniel Kiefer (LSE)

Gemessene Dicke

Relative Abweichung zur Referenz in Prozent

²Joseph L. Rose. *Ultrasonic Waves in Solid Media*. Cambridge University Press, 2004. ISBN: 978-0-521-54889-2, S. 44.

Daniel Kiefer (LSE)

Zusammenfassung

- Codierte Ansteuersignale
 - erhöhtes SNR
- Konditionierung
 - erhöht axiale Auflösung
 - ► Kompromiss: SNR ↔ axiale Auflösung

Zusammenfassung

- Codierte Ansteuersignale
 - erhöhtes SNR
- Konditionierung
 - erhöht axiale Auflösung
 - ▶ Kompromiss: SNR ↔ axiale Auflösung
- Pulskompression
 - ▶ Wiederherstellen der axialen Auflösung eines zeitlich langen Sendesignals
 - Elimination des Phasengangs des Empfangssignals
 - ▶ Kompromiss: axiale Auflösung ↔ SLL
- Dünnere Platten können vermessen werden!

Ausblick

- komplementäre Phasencodes
- anpassen eines parametrischen Signalmodells
 - \rightarrow T = konst ist wertvolle a-priori Information welche durch ein bildgebendes Verfahren nicht ausgenutzt wird.

151

Vielen Dank für Ihre Aufmerksamkeit!

Anhang

Amplitudenspektrum

Mismatched-Filter

Anhang

Wiener-Filter

