Workshop: Schallfeldbasierte Messverfahren vom Transducer bis zur praktischen Anwendung

Simultane Bestimmung der Plattendicke und Schallgeschwindigkeit mit codierten Ultraschallsignalen

M. Sc. <u>Daniel A. Kiefer</u> M. Sc. Michael Fink Dr. techn. Stefan J. Rupitsch

Lehrstuhl für Sensorik Friedrich-Alexander-Universität Erlangen-Nürnberg

Drübeck, 11. Juli 2017

Motivation

Aufgabe: Dicke *d* und Schallgeschwindigkeit *c* der Platte *simultan* bestimmen

Inhalt

2 Ansteuersignale

Pulskompressionsverfahren

Messergebnisse

5 Zusammenfassung

Dicke und Schallgeschwindigkeit

$$c = c_{\mathrm{w}} \left(1 + 2 rac{t_{\mathrm{w}} - t_0}{T}
ight) \qquad \qquad c = c_{\mathrm{w}} \left(1 + 2 rac{t_{\mathrm{w}} - t_0}{T}
ight)$$

- Referenzmessung: $c_{
 m w}$ und $t_{
 m w} = L/c_{
 m w}$
- bestimme: t_0 und T = 2d/c

 $d = c_{\rm w} \Big(t_{\rm w} +$

Modell der Platte

Modell im Zeitbereich

• t₀: Ankunftszeit des direkt transmittierten Schalls

• *T*: Verzögerung zwischen den Mehrfachreflexionen

Verbesserung der axialen Auflösung

- $h_{\rm Ts}$: Impulsantwort des Senders
- $h_{\rm Tr}$: Impulsantwort des Empfängers
- h_T: kombinierte Impulsantwort der Wandler
 - h: Impulsantwort der Platte
 - k: Filter zur Signalverarbeitung

Wahl von:

Anforderungen an das Interrogationssignal g(t)

- hohe *Bandbreite* da die axiale Auflösung $\Delta t \approx \frac{1}{B_{\sigma}}$
- e hohe Energie f
 ür g
 utes SNR
 - Amplitude
 - Zeitdauer $D \times$ Bandbreite B

Ansteuersignale s(t)

Pulse

- B groß
- D gering
 - \rightarrow axiale Auflösung gut
 - \rightarrow SNR niedrig

codierte Ansteuersignale

- hohes Zeit-Bandbreite-Produkt DB
 - \rightarrow SNR hoch
 - ightarrow axiale Auflösung gut
- frequenz- / phasenmoduliert
- D groß: Pulskompression nötig

Konditionierung von Ansteuersignalen

$$g_{c}(t) = s_{c}(t) * h_{T}(t) = s(t) * h_{c}(t)$$

$$\int_{0}^{0} G_{c}(f) = S_{c}(f)H_{T}(f) = S(f)H_{c}(f)$$

$$\sum_{k=0}^{\infty} S(f)H_{c}(f)$$

$$\Rightarrow \quad S_{\rm c}(f) = \frac{S(f)H_{\rm c}(f)}{H_{\rm T}(f)}$$

Wiener-Filter zur Entfaltung (nur Amplitude): $S_{\rm c}(f) \approx S(f) \frac{|H_{\rm c}(f)H_{\rm T}^*(f)|}{|H_{\rm T}(f)|^2 + \beta |H_{\rm T}(f)|^{-2}}$

Konditionierung von Ansteuersignalen

• Gauß-Puls als Modell für den "konditionierten Wandler"

$$h_{
m c}(t)={
m e}^{rac{-t^2}{2\sigma^2}}\cos(2\pi f_{
m c}t)$$

• Vorteil: Bandbreite kann beliebig vorgegeben werden

Abbildung: Chirpsignal mit $f_{\rm M}=2,4$ MHz, B=3,0 MHz, $D=60\,\mu s$ und Tukey-Fenster

Lehrstuhl für Sensorik

Abbildung: zu s(t) und $s_c(t)$ zugehörige Interrogationssignale

Abbildung: Energiedichtespektra der Interrogationssignale g und g_c

Empfangssignal e(t)

Abbildung: Gemessenes Empfangssignal bei Transmission des konditionierten Chirps durch eine Stahlplatte in Wasser.

|5|

Pulskompression

"Not with a Bang, but a Chirp" - B. M. Oliver (Bell Lab. Mem. 1951) Sendesignal s(t)

Pulskompressionsfilter

• Korrelationsfilter (signalangepasstes oder konjugiertes Filter)

 $K(f) = S^*(f)$

• Korrelationsfilter mit Fensterung

 $K(f) = w(f)S^*(f)$, mit reeller Fensterfunktion w(f)

• Wiener-Filter mit Fensterung

$$K(f) = \frac{w(f)G^*(f)}{|G(f)|^2 + 1/\mathrm{SNR}(f)}$$

Abbildung: Empfangssignale nach der Pulskompression für drei verschiedene Stahlplatten

Vergleich der axialen Auflösung

Dicke

Relative Abweichung zur Referenz (Mikrometerschraube, Messungenauigkeit ca. 0,02 mm) gegeben in Prozent.

Schallgeschwindigkeit

S

Zusammenfassung

- Codierte Ansteuersignale
 - erhöhtes Signal-Rausch-Verhältnis
- Konditionierung
 - erhöht axiale Auflösung
 - ► Kompromiss: Signal-Rausch-Verhältnis ↔ axiale Auflösung
- Pulskompression
 - Wiederherstellen der axialen Auflösung eines zeitlich langen Sendesignals
 - ► Kompromiss: axiale Auflösung ↔ Nebenkeulenpegel

Vielen Dank für Ihre Aufmerksamkeit!

