Modellierung nicht-spiegelnder Reflexion von Platten mittels quasi-geführter Wellen

Daniel A. Kiefer Michael Ponschab

Lehrstuhl für Sensorik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91052 Erlangen

17.08.2021 - DAGA 2021, Wien

Gefördert durch ein DEGA Young Scientist Grant.

Motivation: Lambwellen-basierte Durchflussmesser

Abbildung: Geometrie eines Durchfluss-Messgerätes basierend auf geführten Wellen.

- geführte Wellen in der Rohrwand (z.B. Lambwellen)
 - \rightarrow Dickenresonanzen
 - \rightarrow Abstrahlung unter Winkel θ_n ("kritischer Winkel")
- Reflexion an gegenüberliegender Wand
 - \rightarrow gelangt zum Empfänger (E)

Wie lässt sich die **Reflexion an der Rohrwand** beschreiben?

SE

Inhalt

Motivation

- 2 Reflexion: spiegeInd vs. nicht-spiegeInd
- 3 Geführte Wellen
- **4** Berechnung mit geführten Wellen
- 5 Berechnung mit quasi-geführten Wellen
- 6 Zusammenfassung

SpiegeInde vs. nicht-spiegeInde Reflexion

2.1 (1. Jan. 1952), S. 18–19

[2] H. L. Bertoni und T. Tamir. "Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces". In: pplied physics 2.4 (1. Okt. 1973), S. 157–172

D. A. Kiefer

Nicht-spiegeInde Reflexion

Lambwellen: Geführte Wellen in einer freien Platte

• harmonischer, ebener Wellenansatz: $\mathbf{v}(x, y) = \mathbf{v}(y) e^{i(kx - \omega t)}$

Abbildung: Stehende Welle über der Plattendicke

- Eigenwertproblem für $\mathbf{v}(y) = [\mathbf{v}_x(y), \mathbf{v}_y(y)]^{ op}$
 - \rightarrow "Modale Lösungen":
 - $\mathbf{v}_n(y)$ Teilchengeschwindigkeit
 - $k_n(\omega)$ Wellenzahl
 - $\theta_n(\omega)$ Abstrahlwinkel

Abbildung: Ausbreitungsfähige Grundmoden: **A0**: anti-symmetrische **S0**: symmetrische

Numerische Lösungsmethodik:

- <u>nur</u> Dickenrichtung *y* diskretisiert
- z.B. Spektrale Kollokation
 - \rightarrow diskrete Operatoren (Matrizen)

SE

Normalmodentheorie für Lambwellen

Abbildung: Lambwelle: Modenform

- Eigenfunktionen $\mathbf{v}_n(y)$ ("Modenformen")
 - \rightarrow erfüllen eine Orthogonalitätsbeziehung
 - \rightarrow Normalmodentheorie [3]

Abbildung: Druck auf Plattenoberfläche

• Bestimme die "Wellenamplituden" $a_n(x)$ aus

$$\left[\frac{\partial}{\partial_x} - \mathrm{i}k_n\right] a_n(x) = \frac{v_{yn}^* p(x)}{4\overline{P}_n}$$

 $\rightarrow \overline{P}_n$: Leistungsfluss der Wellen $\rightarrow v_{yn}^*$: normale Teilchengeschw. an Plattenoberfläche

[3] B. A. Auld. Acoustic Fields and Waves in Solids 2. 2nd. Bd. 2. 2 Bde. Malabar, Fla: Krieger Publishing Company, 1990. 878 S.

D. A. Kiefer

Nicht-spiegeInde Reflexion

5/13

$$p(x) = 2p_i(x) + p_{ln}(x)$$
 [4]

- *p*_i: einfallender Druck = schallhart reflektierter Druck
- *p*_{ln}: abgestrahlter Druck (von der geführten Welle).
- $p_{\rm i}$ ist vorgegeben ightarrow bekannt

^[4] X. Jia. "Normal-mode theory of nonspecular phenomena for a finite-aperture ultrasonic beam reflected from layered media". In: Applied Physics Letters 70.3 (20. Jan. 1997), S. 309–311

$$p(x) = 2p_{\mathsf{i}}(x) + p_{\mathsf{l}n}(x) \quad [4]$$

- *p*_{In}: abgestrahlter Druck (von der geführten Welle).
- p_i ist vorgegeben \rightarrow bekannt

^[4] Jia, "Normal-mode theory of nonspecular phenomena for a finite-aperture ultrasonic beam reflected from layered media"

$$p(x) = 2p_{i}(x) + p_{ln}(x) \quad [4]$$

- *p*_{In}: abgestrahlter Druck (von der geführten Welle).
- p_i ist vorgegeben \rightarrow bekannt

- Aber: Was ist pin?
 - \rightarrow Aus Kontinuität von v_y an Grenzschicht:

$$p_{ln}(x) = -\frac{Z_{f}}{\cos \theta_{n}} v_{yn} a_{n}(x)$$

^[4] Jia, "Normal-mode theory of nonspecular phenomena for a finite-aperture ultrasonic beam reflected from layered media"

$$p(x) = 2p_{i}(x) + p_{ln}(x) \quad [4]$$

- *p*_{In}: abgestrahlter Druck (von der geführten Welle).
- $p_{\rm i}$ ist vorgegeben ightarrow bekannt

- Aber: Was ist p_{ln}?
 - \rightarrow Aus Kontinuität von v_y an Grenzschicht:

$$p_{\mathrm{l}n}(x) = -\frac{Z_{\mathrm{f}}}{\cos\theta_n} v_{\mathrm{yn}} a_n(x)$$

Somit ist der Anregungsterm:

$$\frac{v_{yn}^* p(x)}{4\overline{P}_n} = \frac{v_{yn}^* p_i(x)}{2\overline{P}_n} - \underbrace{\frac{Z_f |v_{yn}|^2}{4\overline{P}_n \cos \theta_n}}_{\alpha_n} a_n(x)$$

Bestimmungsgleichung

$$\left[\frac{\partial}{\partial x} - i(k_n + i\alpha_n)\right] a_n(x) = \frac{v_{yn}^* p_i(x)}{2\overline{P}_n}$$

Beispiel: Stahlplatte mit Wasser

hoher Impedanzunterschied

- A0 Mode bei $1\,\rm MHz\,mm$
- Strahlbreite: $\alpha_n w = 0.4$

 $\rightarrow w = 1,3 \,\mathrm{cm}$

Berechnung des reflektierten Wellenfeldes

Bestimmungsgleichung $\left[\frac{\partial}{\partial x} - i(k_n + i\alpha_n)\right] a_n(x) = \frac{v_{yn}^* p_i(x)}{2\overline{P}_n}$

Normalmodentheorie (NM):

- **1** Geführte Wellen (k_n, \mathbf{v}_n) berechnen \rightarrow Liefert auch \overline{P}_n und θ_n
- **2** Bestimmungsgl. $1 \times$ integrieren

Bemerkungen:

- Zwei ein-dimensionale Probleme:
- p_i und p_r separat bestimmt

Finite Elemente (FE):

- **1** Geführte Wellen (k_n, \mathbf{v}_n) berechnen
 - $ightarrow \, {\sf da} \; heta_n \; {\sf benötigt} \; {\sf wird}$
- 2 FE-System in der x-y-Ebene lösen

Bemerkungen:

- 1D + 2D Problem
 - \rightarrow entsprechend höherer Rechenaufwand
- Offene Domäne \rightarrow Schwierigkeiten
- p_i und p_r separieren sich nur im Fernfeld

Beispiel: Plexiglasplatte und Wasser

niedriger Impedanzunterschied

- S1' Mode bei $1,4\,\mathrm{MHz\,mm}$
- Strahlbreite: $\alpha_n w = 0.5$
 - $\rightarrow w = 0.64 \, \mathrm{cm}$

Problem:

Abklingverhalten wird durch α_n nicht richtig abgeschätzt!

Quasi-geführte Wellen

• exakte Fluid-Struktur Interaktion [5]

Abbildung: Platte mit angrenzendem Fluid

- Eigenwertproblem für $[\mathbf{v}(y), V]^{\top}$
 - ightarrow 1 zusätzlicher Freiheitsgrad
 - \rightarrow liefert komplexe Wellenzahlen:

$$k_n^{\mathsf{I}} = \operatorname{Re} k_n^{\mathsf{I}} + \mathrm{i} \operatorname{Im} k_n^{\mathsf{I}}$$

Idee

Können quasi-geführte Wellen zur Berechnung verwendet werden?

^[5] D. A. Kiefer u. a. "Calculating the full leaky Lamb wave spectrum with exact fluid interaction". In: *The Journal of the Acoustical Society of America* 145.6 (1. Juni 2019), S. 3341–3350

Berechnung mit quasi-geführten Wellen

• ersetze
$$k_n + i\alpha_n$$
 durch $k_n^{\mathsf{I}} = \operatorname{Re} k_n^{\mathsf{I}} + i\operatorname{Im} k_n^{\mathsf{I}}$:

$$\left[\frac{\partial}{\partial x} - i\underbrace{(k_n + i\alpha_n)}_{k_n^l}\right]a_n(x) = \frac{v_{yn}^* p_i(x)}{2\overline{P}_n}$$

 \rightarrow vermeide Berechnung von $\alpha_n \approx \text{Im } k_n^{\mathsf{I}}$

- ersetze auch v^{*}_{yn} und P
 n durch die entsprechende Größen der quasi-geführten Wellen
 - $\rightarrow~$ funktioniert nicht
 - $\rightarrow\,$ da Normalmoden Theorie nicht gültig

Abbildung: Plexiglas-Wasser, S1' bei $1,4 \,\mathrm{MHz}\,\mathrm{mm}, \,\alpha_n w = 0.5$

Quasi-Normalmoden Theorie

Quasi-Normalmoden Theorie für abstrahlende Wellen benötigt! [6]

[6] E. S. C. Ching u. a. "Quasinormal-mode expansion for waves in open systems". In: *Reviews of Modern Physics* 70.4 (1. Okt. 1998), S. 1545–1554

Zusammenfassung

- Nicht-spiegeInde Reflexion
 - \rightarrow Grund: geführte Wellen
 - \rightarrow bei Einfall unter dem kritischen Winkel
 - → Überlagerung von schallhart reflektiertem Strahl und abgestrahltem Wellenfeld

Berechnung mittels Normalmoden-Theorie

- $ightarrow \,$ zwei 1d-Probleme $ightarrow \,$ sehr effizient
- \rightarrow perfekt geführte Wellen (Lambwellen)
- $\rightarrow\,$ gute Genauigkeit für schwach abstrahlende Moden

- Quasi-geführte Wellen
 - $\rightarrow~$ exakte Fluid-Struktur Interaktion
 - \rightarrow Liefern komplexe Wellenzahlen d.h., berücksichtigen Abstrahlung

Herausforderung:

Entwicklung einer Quasi-Normalmoden Theorie für abstrahlende Lambwellen

