Fluid-coupled mechanical waveguides for ultrasonic sensing

Daniel A. Kiefer

Lehrstuhl für Sensorik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91052 Erlangen, Germany

January 2022 - Institut Langevin, Paris, France

TECHNISCHE FAKULTÄ

The Chair for Sensor Technology at FAU

University of Erlangen-Nürnberg

- Supervisor: Prof. Stefan J. Rupitsch
- Colleague: Michael Ponschab

• Project partner

Location in Germany¹

¹Image modified from "NordNordWest".

Overview

Flow metering Introduction Pipe wall mechanics Flow meter model Prototype and validation Conclusion Complementary projects Electromagnetic Acoustic Transducers Schlieren photography Dip-stick sensor Ultrasonic holography

3 Remarks and outlook

Flow metering market

Water supply¹

Pipeline¹

food industry¹

process monitoring¹

global market share of meter types in 2015²

Lehrstuhl für Sensorik

ISE

²Source: pixabay.com

²M. A. Linnert. "Energieeffiziente Felderzeugung für die magnetisch-induktive Durchflussmessung." Dissertation. Erlangen: University of Erlangen-Nürnberg, Mar. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Principle of transit-time ultrasonic flow metering

Upstream-downstream difference in time of flight $\Delta \tau_{\rm p}$ (T2 \rightarrow T1 and T1 \rightarrow T2).

ISE

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Concept: Lamb wave based flow meter

axial

transversal

advantages/disadvantages:

- $+ \, modular$
- $+ \, no \, \, obstructions$
- $+\,{\rm no}\,\,{\rm perforations}$
- -interruption of process

challenges:

- transmission through the pipe wall
- temperature compensation

modeling of the proposed design

Mechanics of the pipe wall

- conventional model
- strong simplification
- restricted θ: θ ≤ 23° for steel-water
- weak transmission

Mechanics of the pipe wall

- strong simplification
- restricted θ : $\theta \le 23^{\circ}$ for steel-water
- weak transmission

- guided waves
- resonances of the pipe wall
- strong transmission

in the following:

basis for modeling

Lamb waves: guided waves in a free plate

AO: anti-symmetric, SO: symmetric

 harmonic plane wave ansatz for the particle displacements:

 $\mathbf{u}(x, y, t) = \mathbf{u}(y) \,\mathrm{e}^{\mathrm{i}(k_x x - \omega t)}$

• eigenvalue problem for $\mathbf{u}(y)$, k_x :

Dispersion $k_x = k_x(\omega)$ nonlinear

01.2022

Wave velocities

Lehrstuhl für Sensorik

Next: fluid-structure interaction

Next: fluid-structure interaction

Models for a plate-fluid system

Different models to resolve $\mathbf{u}(y)$:

$\mathbf{e}_{y} \underbrace{\mathbf{e}_{x}}_{\leftarrow \mathsf{plate}} \underbrace{\mathbf{e}_{x}}_{\leftarrow \mathsf{fluid}} \underbrace{\mathbf{e}_{x}}_{\leftarrow \mathsf{fluid}}$

Full model:

Truncated model:

Open plate model:

- continuous spectrum
 - \rightarrow integral as solution

- discrete spectrum
- includes parameters that are not related to the physics
- discrete spectrum
- plate-fluid resonances

a-priori:

a-priori:

a-priori:

a-priori:

• wave vectors:

a-priori:

a-priori:

Solving the quasi-guided wave problem³

- determine:
 - \rightarrow eigenfunctions $\left[u_x(y), u_y(y), U\right]^{\top}$
 - ightarrow eigenvalues k_x

 \Rightarrow nonlinear eigenvalue problem (EVP)

• involving
$$k_y(k_x) = \sqrt{rac{\omega^2}{c_{\epsilon}^2} - k_x^2}$$

³D. A. Kiefer et al. "Calculating the full leaky Lamb wave spectrum with exact fluid interaction." In: The Journal of the Acoustical Society of America 145.6 (June 2019), pp. 3341–3350.

Solving the quasi-guided wave problem³

- determine:
 - ightarrow eigenfunctions $\left[u_x(y), u_y(y), U
 ight]^ op$
 - ightarrow eigenvalues k_x

 \Rightarrow nonlinear eigenvalue problem (EVP)

• involving
$$k_y(k_x) = \sqrt{rac{\omega^2}{c_t^2} - k_x^2}$$

Idea:

• **linear** in new variable γ :

$$k_x \stackrel{\rm def}{=} \frac{\kappa_{\rm f}}{2} (\gamma + \gamma^{-1}) \quad \Rightarrow \quad k_y = \pm \frac{\kappa_{\rm f}}{2{\rm i}} (\gamma - \gamma^{-1})$$

³D. A. Kiefer et al. "Calculating the full leaky Lamb wave spectrum with exact fluid interaction." In: The Journal of the Acoustical Society of America 145.6 (June 2019), pp. 3341–3350.

Solving the quasi-guided wave problem³

- determine:
 - ightarrow eigenfunctions $\left[u_x(y), u_y(y), U
 ight]^{ op}$
 - $\rightarrow \,\, {\rm eigenvalues} \,\, k_x$

 \Rightarrow nonlinear eigenvalue problem (EVP)

- involving
$$k_y(k_x) = \sqrt{\frac{\omega^2}{c_{\rm f}^2} - k_x^2}$$

Idea:

• **linear** in new variable γ :

$$k_x \stackrel{\rm def}{=} \frac{\kappa_{\rm f}}{2} (\gamma + \gamma^{-1}) \quad \Rightarrow \quad k_y = \pm \frac{\kappa_{\rm f}}{2{\rm i}} (\gamma - \gamma^{-1})$$

- $\checkmark\,$ reliable and efficient
- ✓ exact fluid-structure interaction
- ✓ uniquely obtain $[k_x, k_y]$

³D. A. Kiefer et al. "Calculating the full leaky Lamb wave spectrum with exact fluid interaction." In: The Journal of the Acoustical Society of America 145.6 (June 2019), pp. 3341–3350.

Measurement of dispersion curves

- transducer: bonded piezoelectric element
- excitation: chirp with $D = 100 \,\mu$ s, $B = 3.8 \,\text{MHz}$
- measurement: heterodyne interferometer
- scan of the center line

Measurement results: steel 1.5 mm, water

Next: sound-flow interaction

Next: sound-flow interaction

- constant transit time
- change of the path length Δl

$$\Delta \tau_{\rm p} = \frac{4b}{c_{\rm f}\cos\theta} \frac{v_0}{c_{\rm p}}$$

- constant path length (almost)
- change of the velocity $c_{\mathrm{f}}
 ightarrow \mathbf{v}_{\mathrm{p}} \cdot \mathbf{e}_{\mathrm{p}}$

$$\Delta \tau_{\rm p} = \frac{4b}{\cos\theta} \frac{v_0 \sin\theta}{(c_{\rm f}^2 - v_0^2 \sin^2\theta)} \label{eq:phi}$$

- constant transit time
- change of the path length Δl

$$\Delta \tau_{\rm p} = \frac{4b}{c_{\rm f}\cos\theta} \frac{v_0}{c_{\rm p}}$$

- constant path length (almost)
- change of the velocity $c_{\mathrm{f}}
 ightarrow \mathbf{v}_{\mathrm{p}} \cdot \mathbf{e}_{\mathrm{p}}$

$$\Delta \tau_{\rm p} = \frac{4b}{\cos\theta} \frac{v_0 \sin\theta}{(c_{\rm f}^2 - v_0^2 \sin^2\theta)} \label{eq:phi}$$

- constant transit time
- change of the path length Δl

$$\Delta \tau_{\rm p} = \frac{4b}{c_{\rm f}\cos\theta} \frac{v_0}{c_{\rm p}}$$

- constant path length (almost)
- change of the velocity $c_{\mathrm{f}}
 ightarrow \mathbf{v}_{\mathrm{p}} \cdot \mathbf{e}_{\mathrm{p}}$

$$\Delta \tau_{\rm p} = \frac{4b}{\cos\theta} \frac{v_0 \sin\theta}{(c_{\rm f}^2 - v_0^2 \sin^2\theta)} \label{eq:eq:electric}$$

- constant transit time
- change of the path length Δl

$$\Delta \tau_{\rm p} = \frac{4b}{c_{\rm f}\cos\theta} \frac{v_0}{c_{\rm p}}$$

+ simpler + more general

- constant path length (almost)
- change of the velocity $c_{\mathrm{f}}
 ightarrow \mathbf{v}_{\mathrm{p}} \cdot \mathbf{e}_{\mathrm{p}}$

dev.:
$$\frac{v_0^2}{c_p^2} \approx 0.1$$
‰

$$\tau_{\rm p} = \frac{4b}{\cos\theta} \frac{v_0 \sin\theta}{(c_{\rm f}^2 - v_0^2 \sin^2\theta)}$$

Determining the flow rate Q

Measurement errors due to:

Δτ_p: electronics + signal processing
 S: ultrasonic system

Measurement error diagram

Possible errors due to sensitivity: $S = \frac{1}{4} K dc_{\rm f} c_{\rm p} \cos \theta(c_{\rm p}, c_{\rm f})$

• Perturbation theory⁴: analytical expressions for effect on c_D.

⁴B. A. Auld. Acoustic Fields and Waves in Solids. 2nd ed. Vol. 2. Krieger Publishing Company, 1990. 878 pp.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Measurement error diagram

Possible errors due to sensitivity: $S = \frac{1}{4} K dc_{\rm f} c_{\rm p} \cos \theta(c_{\rm p}, c_{\rm f})$

• Perturbation theory⁴: analytical expressions for effect on c_D.

⁴B. A. Auld. Acoustic Fields and Waves in Solids. 2nd ed. Vol. 2. Krieger Publishing Company, 1990. 878 pp.

Effect of temperature ${\mathcal T}$

⁵N. Bilaniuk and G. S. K. Wong. "Speed of sound in pure water as a function of temperature." In: The Journal of the Acoustical Society of America 93.3 (Mar. 1, 1993), pp. 1609–1612.

D. A. Kiefer (FAU)

Lehrstuhl für Sensorik

Effect of temperature ${\mathcal T}$ on the flow meter

Lamb-wave based flow meters exhibit less cross-sensitivity to temperature.

ISE

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Prototype of the flow meter

flow meter prototype⁶

- steel pipe, 1.5 mm wall thickness
- piezoelectric Lamb wave transducers

next:

- validated model:
 - 1 vibrometer measurement → pipe wall mechanics
 - **2** transmission measurements \rightarrow time of flight

⁶Designed and fabricated by Diehl Metering GmbH.

1 Vibrometer measurements

ISE

22/34

2 Transmission measurements

- 7665 measurements at controlled and supervised parameter values⁷:
 - \rightarrow flow rate Q_{nom} : 6.4, 63, 630, 4000, 5000, and 6000 L/h
 - \rightarrow temperature \mathcal{T}_{nom} : 10 °C 90 °C in steps of 10 °C
 - \rightarrow reference measurements $Q_{\rm ref}$ and $\mathcal{T}_{\rm ref}$

2 Validation of the time-of-flight model

 $ightarrow \, pprox 10 \, \%$ deviation from material datasheet

Conclusion of Lamb wave based flow meters

- modeling with (leaky) guided waves:
 - \rightarrow rapidly converging discrete basis
 - ightarrow including the effect of flow and temperature
 - \rightarrow simple to invert
 - ightarrow reveals an intrinsic passive compensation to temperature

Overview

Flow metering Introduction Pipe wall mechanics Flow meter model Prototype and validation Conclusion

- Complementary projects Electromagnetic Acoustic Transducers Schlieren photography Dip-stick sensor Ultrasonic holography
- 3 Remarks and outlook

coil on flexible PCB

- current: 20 A
- impedance matching network
- contact-less

coil on flexible PCB

- current: 20 A
- impedance matching network
- contact-less

coil on flexible PCB

- current: 20 A
- impedance matching network
- contact-less

coil on flexible PCB

- current: 20 A
- impedance matching network
- contact-less

laboratory setup

vibrometer measurement

Lehrstuhl für Sensorik

⁸L. Vogl. "Simulation-based design, implementation and verification of an electromagnetic acoustic transducer for generation of Lamb waves." Bachelor Thesis. University of Erlangen-Nürnberg, Apr. 2018.

laboratory setup

⁹K. Schmid. "Schlieren-optical imaging of the radiation of plate waves into a fluid." Bachelor Thesis. University of Erlangen-Nürnberg, Oct. 2018.

¹⁰S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

water tank

Fluid-coupled mechanical waveguides

radiating waveguide

laboratory setup

¹⁰S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Schlieren image: A0, 1 MHz, 1 mm brass

laboratory setup

¹⁰S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Immersed stick: mode conversion

field components displacement hor. leaky field pressure trapped wave FE computation: PMMA-water

Holography^{12,13}

¹²J. Freitag. "Design, implementation and verification of acoustic holograms considering full solid mechanics." Master Thesis. University of Erlangen-Nürnberg, Sept. 2020.

¹³C. Ittner. "Design, fabrication and verification of an acoustic hologram." Master Thesis. University of Erlangen-Nürnberg, July 2019.

Lehrstuhl für Sensorik

Hologram measurements¹⁴

laboratory setup

• 6 hours measurement:

scanning hydrophone

• stereolithography:

holographic plate

¹⁴J. Freitag. "Design, implementation and verification of acoustic holograms considering full solid mechanics." Master Thesis. University of Erlangen-Nürnberg, Sept. 2020.

D. A. Kiefer (FAU)

Measured holograms¹⁵

simulation:

¹⁵J. Freitag. "Design, implementation and verification of acoustic holograms considering full solid mechanics." Master Thesis. University of Erlangen-Nürnberg, Sept. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Overview

Flow metering Introduction Pipe wall mechanics Flow meter model Prototype and validation Conclusion Complementary projects Electromagnetic Acoustic Transducers Schlieren photography Dip-stick sensor Ultrasonic holography

3 Remarks and outlook

Remarks on modeling with quasi-guided/leaky waves

- dip-stick sensor
 - \rightarrow conversion coefficients
- sensitivity analysis with leaky waves
 - $\rightarrow\,\,$ perturbation theory
- nonspecular reflection with leaky waves
- energy velocity $c_{\rm e}$

Quasinormal mode (QNM) theory of quasi-guided waves needed¹⁶

¹⁶E. S. C. Ching et al. "Quasinormal-mode expansion for waves in open systems." In: Reviews of Modern Physics 70.4 (Oct. 1, 1998), pp. 1545–1554.

Lehrstuhl für Sensorik

Outlook

- o modeling with leaky Lamb waves
 - $\rightarrow \,$ normalmode theory
- Zero-Group-Velocity resonances (Claire Prada)
 - \rightarrow modeling
 - ightarrow leakage
- waves in fluid-coupled resonators (Fabrice Lemoult)

Outlook

- o modeling with leaky Lamb waves
 - $\rightarrow \,$ normalmode theory
- Zero-Group-Velocity resonances (Claire Prada)
 - \rightarrow modeling
 - ightarrow leakage
- waves in fluid-coupled resonators (Fabrice Lemoult)

Merci beaucoup pour votre attention!

Flow meter designs

Determination of the flow rate Q: model inversion

hydrodynamic correction factor K as suggested by the acquired data

D. A. Kiefer (FAU)

Temperature determination from direct path signal

• from sensitivity analysis:

$$\Delta \tau_{\rm p}^{\rm d}(\mathcal{T}) \approx -\frac{D}{2c_{\rm e}} \frac{\partial E}{\partial \mathcal{T}} \frac{\Delta \mathcal{T}}{E}$$

- uncertainty $\approx 2 \, \mathrm{K}$
- avoid temperature sensor

laboratory setup

¹⁷K. Schmid. "Schlieren-optical imaging of the radiation of plate waves into a fluid." Bachelor Thesis. University of Erlangen-Nürnberg, Oct. 2018.

¹⁸S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

plate insonification

¹⁸S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

nonspecular reflection: A0, 1 MHz, 3 mm steel

¹⁷K. Schmid. "Schlieren-optical imaging of the radiation of plate waves into a fluid." Bachelor Thesis. University of Erlangen-Nürnberg, Oct. 2018.

¹⁸S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

radiating waveguide

laboratory setup

¹⁷K. Schmid. "Schlieren-optical imaging of the radiation of plate waves into a fluid." Bachelor Thesis. University of Erlangen-Nürnberg, Oct. 2018.

¹⁸S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

laboratory setup

Schlieren image: A0, 1 MHz, 1 mm brass

¹⁷K. Schmid. "Schlieren-optical imaging of the radiation of plate waves into a fluid." Bachelor Thesis. University of Erlangen-Nürnberg, Oct. 2018.

¹⁸S. Sivanesan. "Simulation and utilization of spatial light modulators for schlieren-optical imaging of ultrasound." Master Thesis. University of Erlangen-Nürnberg, Aug. 2020.

D. A. Kiefer (FAU)

Fluid-coupled mechanical waveguides

Conclusion of Lamb wave based flow meters

- $+ \, non-invasive \, \, configuration$
 - influenced by the pipe wall mechanics
- modeling with (leaky) guided waves: rapidly converging discrete basis
 - + handles the "structure borne" ultrasound
 - + simple to invert model of the flow meter
 - + insensitive to actual transducer
 - → nonlinear eigenvalue problem reliably solved by change of variable

analysis of

- ultrasonic convection: different to piston transducer meters → beam displacement is sensed
- pipe: uncertainty and aging
- scaling and dezincification
- temperature behavior:
 - + intrinsic passive compensation (guided waves ↔ fluid)
 - + pipe material is relevant (design freedom)
 - hydrodynamic correction factor depends on temperature