Berechnung der vollständigen Dispersionscharakteristik von abstrahlenden Lambwellen mittels Variablentransformation

Daniel A. Kiefer Michael Ponschab Stefan J. Rupitsch

Lehrstuhl für Sensorik Friedrich-Alexander-Universität Erlangen-Nürnberg 91052 Erlangen, Deutschland

21. März 2019 - DAGA Rostock

Motivation

Geführte Wellen in Festkörpern:

Fluid

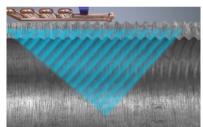


Abbildung: Welle in Rohrwand¹

- Zerstörungsfreie Werkstoffprüfung
 - \rightarrow hohe Reichweite
 - → z.B. Prüfen von Rohren
- Ultraschallmesstechnik
 - → parasitär oder gezielt genutzt
 - → z. B. Durchflussmesstechnik

Wie findet die **Interaktion** zwischen der Platte und dem Fluid statt?

¹ROSEN Group. ROSEN EMAT Flowmeter. 2018. URL: http://flowmeter.rosen-group.com/

Inhalt

- Motivation
- Geführte Wellen in Platten
- 3 Das Lambleckwellen-Problem
- Variablentransformation
- Ergebnisse
- 6 Fazit

Lambwellen und Dispersion

- Lambwelle: geführte Welle in einer freien Platte mit Verschiebungen in der x-y-Ebene
- sind dispersiv:

Dispersion

Wellenzahl ist frequenzabhängig:

$$k_{x} = k_{x}(f) \Leftrightarrow$$

$$\Leftrightarrow$$

$$c_{\mathsf{p}} = c_{\mathsf{p}}(f)$$

• Der Zusammenhang $k_x(f)$ wird durch die charakteristische Gleichung

$$F(k_{\mathsf{x}},f)=0$$

in impliziter Form beschrieben.

- Diese ist jedoch transzendent!
 - → numerische Methoden nötig
 - → schlecht konditioniert

Abbildung: Querschnitt der Platte

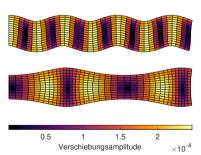


Abbildung: Grundmoden in einer freien Platte. **Oben**: anti-symmetrische Mode A0;

Unten: symmetrische Mode S0.

Interaktion mit einem angrenzenden Fluid

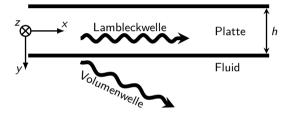
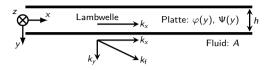


Abbildung: Querschnitt der Platte mit angrenzendem Fluid.

- Lambleckwelle: in Platten, die an ein Fluid angrenzen
- regt im Fluid eine ebene Volumenwelle an
 - ightarrow Veränderte und neue Moden im Vergleich zur freien Platte
 - \rightarrow gibt Energie an das Fluid ab
 - $\rightarrow \ \mathsf{durch} \ \mathsf{Abstrahlung} \ \mathsf{bed\"{ampft}}$

Modellierung



 Platte: harmonische Wellenausbreitung in x-Richtung:

$$\varphi_{p}(x, y, t) := \varphi(y) e^{i(k_{x}x - \omega t)}$$

$$\Psi_{p}(x, y, t) := i\Psi(y) e^{i(k_{x}x - \omega t)}$$

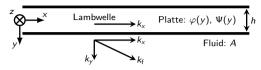
- **Halbraum** y > h/2: Fluid-Domäne
 - Annahme ebener Wellenausbreitung:

$$\varphi_f(x,y,t) := A e^{i k_y y} e^{i (k_x x - \omega t)}$$

- ightarrow bis auf die Skalare A und k_y vollständig bekannt
- ightarrow Bewegungs-Differenzialgleichungen nur auf $y \in [-h/2, h/2]$

- ⇒ abgeschlossene Domäne
- ⇒ analytisch exakte Interaktion Platte-Fluid

Modellierung



• Bewegungsgleichungen in den Potentialen $q = [\varphi(y), \Psi(y), A]^T$:

$$\begin{bmatrix} \frac{\partial^2}{\partial y^2} + \frac{\omega^2}{c_t^2} & 0 & 0 \\ 0 & \frac{\partial^2}{\partial y^2} + \frac{\omega^2}{c_t^2} & 0 \end{bmatrix} \cdot \begin{bmatrix} \varphi(y) \\ \Psi(y) \\ A \end{bmatrix} = k_x^2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \varphi(y) \\ \Psi(y) \\ A \end{bmatrix}$$

Randbedingung zum Vakuum:

$$\begin{bmatrix} \sigma_{yy}(y) \\ \sigma_{xy}(y) \end{bmatrix}_{y=-h/2} \stackrel{!}{=} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Randbedingungen zum Fluid:

$$\begin{bmatrix} \sigma_{yy}(y) + p_f(y) \\ \sigma_{xy}(y) \end{bmatrix}_{y=h/2} \stackrel{!}{=} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Für ein bestimmtes ω ist dies ein \Rightarrow differentielles, nichtlineares **Eigenwertproblem** in k_x .

Lambleckwellen-Problem

- Diskretisierung des differenziellen Eigenwertproblems (z. B. spektrale Kollokation, FE, FD)
 - → algebraisches nichtlineares Eigenwertproblem

Eigenwertproblem: Lambleckwellen

$$\underline{\underline{F}}(k_x)\underline{q} = \underline{0}, \quad \text{mit} \quad \underline{\underline{F}}(k_x) = k_x^2\underline{\underline{A}}_2 + k_x\underline{\underline{A}}_1 + \underline{\underline{A}}_0 + \mathrm{i}\,k_y\underline{\underline{B}},$$

$$\text{wobei } k_y = \sqrt{k_\mathrm{f}^2 - k_x^2}.$$

 k_{v} ist durch k_{x} bestimmt, aber die Beziehung ist:

nichtlinear

nicht eindeutig

nicht holomorph

Schwierigkeiten beim Lösen

Übliche Herangehensweise

- Nichtlinearität
 - → nichtlineare Eigenwertlöser (z. B. iterative Linearisierung)
 - → sind nicht immer zuverlässig ⁴
- Eindeutigkeit
 - → lösen beider Probleme
- Holomorphie
 - ightarrow gebietsweise lösen
- offene Domäne (angrenzender Halbraum)
 - ightarrow Perfectly Matched Layer (PML), Boundary Elements (BEM), analytische Lösung im Fluid

Im Folgenden:

Überführen des nichtlinearen Eigenwertproblems in ein lineares Eigenwertproblem.

⁴Volker Mehrmann und Heinrich Voss. "Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods". en. In: *GAMM-Mitteilungen* 27.2 (Dez. 2004), S. 121–152

Variablentransformation

nichtlineares Eigenwertproblem für Lambleckwellen:

$$\underline{\underline{F}}(k_x)\underline{q} = \underline{0}, \quad \text{mit} \quad \underline{\underline{F}}(k_x) = k_x^2\underline{\underline{A}}_2 + k_x\underline{\underline{A}}_1 + \underline{\underline{A}}_0 + \mathrm{i}\,k_y\underline{\underline{B}},$$

$$\text{wobei } k_y = \sqrt{k_\mathrm{f}^2 - k_x^2}.$$

Variablentransformation:

$$k_x := k_f \frac{\gamma + \gamma^{-1}}{2} \quad \Rightarrow \quad k_y = \pm k_f \frac{\gamma - \gamma^{-1}}{2i}$$

resultiert in zwei äquivalente

polynomielle Eigenwertprobleme

$$\begin{split} \underline{\underline{P}}^{\pm}(\gamma)\underline{q} &= \underline{0} \quad \text{mit} \quad \underline{\underline{P}}^{\pm}(\gamma) := 4\gamma^2\underline{\underline{F}}(k_{\mathsf{x}}(\gamma)) \\ &= \underline{\underline{P}}_{\!\!4}\gamma^4 + \underline{\underline{P}}_{\!\!3}^{\pm}\gamma^3 + \underline{\underline{P}}_{\!\!2}\gamma^2 + \underline{\underline{P}}_{\!\!1}^{\pm}\gamma + \underline{\underline{P}}_{\!\!0} \end{split}$$

⇒ sind linearisierbar!

Eindeutigkeit

• \underline{P}^+ und \underline{P}^- bestimmen jeweils vollständig und eindeutig das Spektrum von $\underline{F}!$

Grund:

I Spektrum von \underline{P}^- ist das invertierte von \underline{P}^+ , da

$$\underline{\underline{P}}^+(\gamma) = \gamma^4 \underline{\underline{P}}^-(\gamma^{-1}).$$

 \square Die zugehörigen Wellenzahlen k_x sind gleich, da

$$k_{\mathsf{x}}(\gamma) = k_{\mathsf{f}} \frac{\gamma + \gamma^{-1}}{2} = k_{\mathsf{x}}(\gamma^{-1}).$$

- $\Rightarrow \underline{P}^+$ und \underline{P}^- resultieren im gleichen Wellenzahl-Spektrum k_x .
- \Rightarrow Wähle ohne Einschränkung, z. B., $\underline{P} = \underline{P}^+$

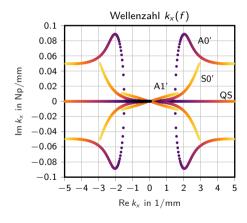
vollständige, eindeutige, holomorphe und linearisierbare Problembeschreibung!

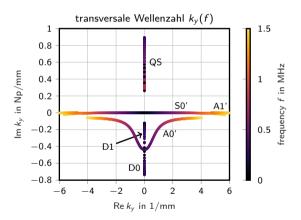
Lösen des Lambleckwellen-Problems

Somit kann das Lambleckwellen-Problem folgendermaßen gelöst werden:

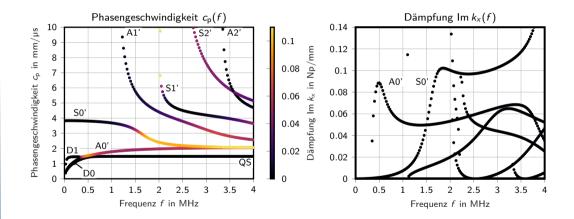
- Nehme im Halbraum ebene Wellenausbreitung an
 - → Formulierung auf abgeschlossener Domäne
- 2 Diskretisiere das differentielle Eigenwertproblem
- Variable ntransformation $k_x(\gamma) = k_f \frac{\gamma + \gamma^{-1}}{2}$
- \blacksquare Wähle ohne Einschränkung \underline{P} als \underline{P}^+ oder \underline{P}^-
- Führe ein Zustandsraum ein, sodass das polynomielle Eigenwertproblem $\underline{P}(\gamma)q = \underline{0}$ lineare Gestalt annimmt.
- 6 Löse das lineare Eigenwertproblem mit Standardmethode
 - \rightarrow Eigenwerte γ_n , Eigenvektoren q_n
- Berechne die Wellenzahlen $k_x(\gamma_n)$ und ggf. zugehörige $k_y(\gamma_n)$

Wellenzahl-Spektrum: 1 mm-Messingplatte einseitig angrenzend an Wasser

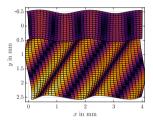




Phasengeschwindigkeit und Dämpfung: 1 mm-Messingplatte einseitig angrenzend an Wasser



Verschiebungsfelder: 1 mm-Messingplatte einseitig angrenzend an Wasser



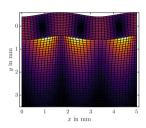
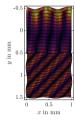


Abbildung: A0'-Mode bei $f = 1 \,\text{MHz}$

Abbildung: S0'-Mode bei $f=1,5\,\mathrm{MHz}$

Abbildung: QS-Mode bei $f = 0.4 \, \mathrm{MHz}$



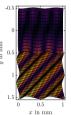
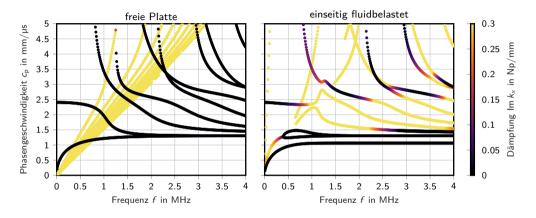


Abbildung: A0'-Mode bei f = 4 MHz

Abbildung: S0'-Mode bei $f = 4 \,\text{MHz}$

1 mm-Plexiglasplatte einseitig angrenzend an Wasser



Dispersionskurven der fluidbelasteten Platte können sich deutlich von denen der freien Platte unterscheiden.

Zusammenfassung und Ausblick

Problemstellung:

- Eigenwertproblem besser konditioniert als Nullstellensuche
- jedoch ein nichtlineares Eigenwertproblem wegen Interaktion mit dem Fluid

Vorteile der Methode:

- + Variablentransformation führt auf linearisierbares Eigenwertproblem
- + Lösen mit modernen linearen Eigenwertlösern ist sehr **zuverlässig** und **effizient**.
- + führt auf vollständiges Wellenzahl-Spektrum

Anwendbar für:

+ viskoelastische, anisotrope, inhomogene, geschichtete Platten

Einschränkungen:

- nur ebene Geometrien mit unendlicher Ausdehnung
- keine viskose Fluide
- nicht geeignet für zwei verschiedene angrenzende Fluide

Vielen Dank für Ihre Aufmerksamkeit!

Vergleich zur charakteristischen Gleichung

1 mm-Messingplatte einseitig angrenzend an Wasser

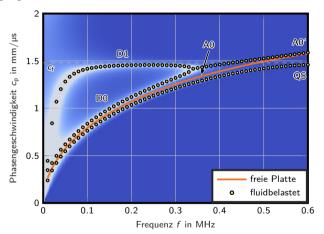


Abbildung: Ausschnitt der Dispersionskurven im unteren Frequenzbereich. Hintergrund: für helle Farben tendiert der Betrag der charakteristischen Gleichung zu Null.