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A B S T R A C T

Detecting surface contamination on thin thermoformed polymer plates is a critical issue for various industrial
applications. Lamb waves offer a promising solution, though their effectiveness is challenged by the strong
attenuation and anisotropy of the polymer plates. This issue is addressed in the context of a calcium carbonate
(CaCO3) layer deposited on a polypropylene (PP) plate. First, the viscoelastic properties of the PP material are
determined using a genetic algorithm inversion of data measured with a scanning laser vibrometer. Second,
using a bi-layer plate model, the elastic properties and thickness of the CaCO3 layer are estimated. Based on
the model, the sensitivity analysis is performed, demonstrating considerable effectiveness of the A1 Lamb mode
in detecting thin layers of CaCO3 compared to Lamb modes A0 and S0. Finally, a direct application of this
work is illustrated through in-situ monitoring of CaCO3 contaminants using a straightforward inter-transducer
measurement.
1. Introduction

Modern automotive industry employs advanced sensors for Simul-
taneous Localization and Mapping (SLAM) of the vehicle’s surround-
ings [1]. The most sophisticated sensors, based on radio detection
and ranging (RADAR) or light detection and ranging (LIDAR) systems,
are often installed behind the plate-like components of the vehicle
for additional protection and aesthetic reasons. However, the presence
of contaminations on the surface of these components may block the
signal of SLAM sensors. Therefore, there is a need for a monitoring
system that is capable of detecting and localizing contaminants such
as dirt, ice or water droplets to provide a feedback to the SLAM. In this
work, we explore a new modality to detect the surface contaminants
using ultrasonic guided waves, specifically Lamb waves, which can be
transmitted through the area of interest without obscuring the signal
used for SLAM.

The Lamb waves have been widely used for the monitoring in
different types of structures, including metal plates [2], composites [3]
or adhesively bonded joints [4]. A typical use of Lamb waves is based
on a network of transducers embedded in the structure in order to
detect defects. More advanced methods involve localization and charac-
terization of defects, e.g. using tomography [5–7] or phased arrays [8].
In the majority of applications, the Lamb waves were employed to

∗ Corresponding author at: AGH University of Krakow, Department of Mechanics and Robotics, al. A. Mickiewicza 30, Krakow, 30-059, Poland.
E-mail address: jspytek@agh.edu.pl (J. Spytek).

detect different types of structural defects such as cracks, delaminations
or corrosion. In some cases the Lamb waves were used to detect ice
on the plates’ surface, e.g. using principal component analysis [9] or
probability-based reconstruction algorithm (PRA) [10]. However, the
sensitivity of Lamb waves to other types of contamination, such as dirt
or mud, has not yet been explored in the state of the art. Moreover,
the information on the use of Lamb waves in thermoformed plate-
like structures is also limited. Due to the widespread use of such
components, there is a need for a more detailed analysis of Lamb waves’
behavior in thermoformed polymer plates.

To achieve the most effective detection of surface contaminants in
thermoformed polymer plates using Lamb waves, the material proper-
ties of both the substrate and the contaminant layer must be determined
beforehand. The estimation of material properties can be realized
using different approaches including static tests, vibrational methods
or wave propagation methods [11]. The wave-based methods may be
realized using bulk waves [12] or Lamb waves [13]. The character-
ization of thin structures with bulk waves has its limitations [13],
such as relatively narrow excitation frequency bandwidth, estimation
errors due to reflections at plate boundaries and the need for prior
knowledge of the material symmetry axis. The methods based on Lamb
waves overcome these limitations, but require much more sophisticated
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Ultrasonics 149 (2025) 107571 
inversion procedure. In general, parameter estimation using Lamb
waves is performed on measurements acquired in multiple spatial
points, although under some specific measurement conditions only
two points can be sufficient [14]. For an inversion procedure, an
bjective function is often built from space–time data using frequency–
avenumber pairs corresponding to the experimental dispersion curves

[15]. Several different inversion procedures have been used with Lamb
waves, including particle swarm optimization [13,15–17], genetic al-
gorithm [18–21], simulated annealing [22], gradient descent [23],
bound-constrained optimization [24], deep learning [14] or machine
earning [25]. Deep and machine learning techniques are more suited
owards real-time applications, as the trained neural network can

provide accurate estimates of elastic parameters in seconds, while
ther inversion methods often need hours for computing numerous
terations. On the other hand, a lot of data is required to train neural

networks, so numerical simulations are often used to obtain the training
data. The inversion methods based on Lamb waves have been used to
stimate elastic [13,15,16,19,20,22,26] as well as viscoelastic [17,24]
arameters of the material. However, the problem of identifying a full

viscoelastic orthotropic model with 18 independent parameters can be
ery challenging [17]. Such a problem requires space–time data with
road frequency response and well-resolved modes. For this purpose,
ostprocessing algorithms are often used to better extract the complex

wavenumbers of the modes from frequency–wavenumber data [17].
To estimate the properties of the contamination, the wavenumbers

need to be extracted from the space–time Lamb wave measurements
corresponding only to the area of contamination. To this end, the
techniques of full-field processing known as Acoustic Wavenumber
Spectroscopy (AWS) or Local Wavenumber Estimation (LWE) were used
previously [27,28]. These techniques enable estimating local wavenum-
ber values at specific frequencies, which can be used for detection
and characterization of damage. These techniques usually work for a
ingle mode, therefore a mode filtration is often used in frequency–
avenumber domain. The local mapping of wavenumber values is

usually performed by using windowing functions in spatial (AWS) or
avenumber (LWE) domains. These techniques have been successfully
sed for imaging of thickness changes [27,29], corrosion [30] as well

as delaminations in Carbon Fiber-Reinforced Polymers (CFRP) [31,32]
nd metal multi-layer plates [33]. The use of windowing functions

in LWE or AWS requires careful consideration. For material charac-
terization, depending on the window length, a compromise must be
found between localization accuracy and wavenumber estimation. To
partially avoid this issue, we propose to use a technique similar to LWE
and AWS, which is based on calculating the Laplacian of the space–
time wavefield in each position. Thanks to this approach, there is no
need for applying a windowing function for the estimation of the local
wavenumber. Moreover, this approach can also be used to estimate
the local attenuation coefficient, which is vital for the estimation of
viscoelastic properties.

In this work, we investigate the influence of surface contaminants
n the Lamb waves propagating in thermoformed polymer plates for
he purpose of detection. To this end, we first estimate viscoeleastic
roperties of polypropylene plates using a genetic algorithm for the
arametric inversion problem. Secondly, we perform a full-field imag-
ng of the plate with surface contamination added in the form of a
aCO3 layer, which is meant to simulate a dirt layer deposited on
he surface of the plate. For these data sets, we estimate frequency-
ependent local wavenumber values from the area of the deposited con-

taminant. Based on the local wavenumber values for different amounts
f deposited contamination, we determine the material properties of

the CaCO3 layer using an inversion procedure with a bi-layer plate
model. Using the properties of both the polypropylene and the CaCO3
we perform a sensitivity analysis to determine the most suitable Lamb
modes and frequency range for the detection of contamination. Finally,
we present an example of a simple inter-transducer measurement to
prove the validity of Lamb wave based monitoring system.
 w

2 
2. Material characterization procedure

In this work, we assess the detectability of surface contamination
on a thin-walled polypropylene sample with guided waves propagat-
ing in the layered medium. Specifically, we use a standard bi-layer
plate model [34,35]. The wavefield in both layers is governed by the
equations of linear elasticity. We assume a layer of CaCO3 contami-
nant that is rigidly connected to the layer of polypropylene, meaning
continuity of displacements and tractions is imposed at the interface.
The top and bottom surfaces are traction-free. Each layer is defined by
 thickness, elastic constants and mass density. We then calculate the
ispersion curves of guided waves using a semi-analytical procedure

implemented in the publicly available software GEWtool [36,37].
The computation consists in discretizing the boundary-value prob-
lem that describes guided wave propagation using Spectral Elements,
i.e., high-order Finite Elements [38,39], and subsequently obtaining
he dispersion relation by solving the resulting standard eigenvalue
roblem.

To detect a contaminant, the material properties of both the sub-
strate and the contaminant layer must be determined first. The charac-
terization of the polypropylene sample and the surface contamination
requires several signal processing techniques, which are described in
this section. Firstly, Section 2.1 describes the inversion procedure for
the global estimation of elastic parameters based on the full-field
measurements of Lamb waves. Secondly, Section 2.2 demonstrates
the Laplacian method, which is used for the estimation of the local
wavenumber and attenuation of Lamb waves for different frequencies.
The frequency-dependent attenuation is then used together with the
globally estimated elastic parameters to obtain viscous coefficients
by fitting the imaginary part of theoretical dispersion curves to the
attenuation curves. As a result, viscoelastic properties of the plate are
obtained. In the next step, the Laplacian method is used to estimate
the local wavenumber corresponding to the area with the layer of
contaminant. For this purpose, the inversion procedure (Section 2.1)
is applied to estimate the properties of CaCO3 by fitting theoretical
dispersion curves from a bi-layer plate model to the estimated local
wavenumber values.

2.1. Inversion procedure for elastic parameter estimation

The inversion procedure used in this work is based on the space–
time measurements of the propagating Lamb waves. The normal surface
displacement 𝑢(𝑥, 𝑡) is measured over time 𝑡 and multiple locations 𝑥
using a full-field scanning technique. The multidimensional Fourier
transform of 𝑢(𝑥, 𝑡) provides the experimental dispersion curves 𝑈 (𝑘, 𝜔).
In order to estimate material parameters based on 𝑈 (𝑘, 𝜔), we use an
inversion procedure coupled with a genetic algorithm implementation
based on the work by Bochud et al. [19]. The approach is described in
Fig. 1. Each population member contains a set of direction-dependent
material parameters: Young’s Modulus 𝐸𝑖, Poisson’s ratio 𝜈𝑖𝑗 , shear
modulus 𝐺𝑖𝑗 and density 𝜌. The elastic parameters 𝐸𝑖, 𝜈𝑖𝑗 and 𝐺𝑖𝑗 can
lso be represented in the form of a stiffness matrix 𝐶𝑖𝑗 , e.g., using

Voigt notation. The relationship between the engineering constants and
the coefficients of the matrix 𝐶𝑖𝑗 can be found in Appendix, based
on [40]. Assuming a known thickness of the plate ℎ, a set of theoretical
dispersion curves 𝑘𝑚(𝜔) is calculated, where 𝑚 is the number of a Lamb
mode. The calculated dispersion curves are then mapped onto a 2D
mask 𝑀(𝑘, 𝜔), where for each frequency–wavenumber pair 𝑘𝑚(𝜔) the

ask value is set to 1. The cost function (𝐹 ) to be maximized using the
enetic algorithm can be therefore defined as:

𝐹 =
∑

𝑘,𝜔
𝑀(𝑘, 𝜔) ⋅ 𝑈 (𝑘, 𝜔) (1)

The value of 𝐹 is maximized if the theoretical dispersion curves over-
lap with the experimental dispersion curves. The sensitivity of this
approach depends on the modal distribution of energy in frequency–

avenumber space 𝑈 (𝑘, 𝜔). Therefore, higher-order modes which are
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Fig. 1. The scheme of the inversion procedure to estimate material parameters from experimental dispersion curves.
subject to higher attenuation may be underrepresented in the curve-
fitting process. We can account for that in two ways. Firstly, applying
mode- and frequency-dependent weights on the mask window 𝑀(𝑘, 𝜔),
e.g. by increasing the gain for higher-frequency modes. Secondly, by
scaling the amplitudes of the individual mode in the 𝑈 (𝑘, 𝜔) data
set, to make the amplitude distribution more uniform. Practically,
this approach can be realized by the manual filtration of particular
modes in the (𝑘, 𝜔) space and normalizing their amplitudes, while being
cautious not the amplify the noise contribution too much. The band-
pass mode filter can be realized based on a Gaussian window, given by
the following formula:

𝑊 (𝑘, 𝜔) = exp
(

−
(|𝑘| − 𝑘𝑐 (𝜔))2

2𝐵2
𝑚

)

(2)

where 𝑘𝑐 (𝜔) is a set of center wavenumbers of the filter, typically
following a particular Lamb mode, and 𝐵𝑚 indicates the width of the
filter.

2.2. Wavenumber and attenuation estimation using Laplacian

The Laplacian algorithm proposed in this work is a signal process-
ing technique that can be used to obtain local estimates of both the
wavenumber and the attenuation of Lamb modes. To demonstrate the
theoretical principles behind this method, let us assume an equation for
a wave 𝑢(𝑥, 𝜔) propagating in the direction 𝑥 in frequency domain 𝜔:

𝑢(𝑥, 𝜔) = 𝐴(𝜔)𝑒−𝑖𝑘𝑀𝑥 (3)

where 𝑘𝑀 is the sum of the real wavenumber 𝑘𝑅 and 𝑖𝛼, where 𝛼 is the
attenuation coefficient. Calculating the Laplacian of the displacement
field 𝛥𝑢(𝑥, 𝜔) and neglecting the second order term in 𝛼 yields:

𝛥𝑢(𝑥, 𝜔) = −𝑘2𝑀𝑢(𝑥, 𝜔) = −(𝑘𝑅 + 𝑖𝛼)2𝑢(𝑥, 𝜔) ≈
(

−𝑘2𝑅 + 𝑖2𝜔𝛼
𝑐

)

𝑢(𝑥, 𝜔) (4)

with 𝑘𝑅 = 𝜔
𝑐 , where 𝑐 is the phase velocity. This relationship can then

be used to estimate a local wavenumber 𝑘𝑅(𝑥, 𝜔) and attenuation 𝛼(𝑥, 𝜔)
directly from the Laplacian of the measured wavefield 𝛥𝑢(𝑥, 𝜔) for any
frequency 𝜔 using the following equations:

𝑅(𝑥, 𝜔) = 𝛥𝑢(𝑥, 𝜔)
𝑢(𝑥, 𝜔) = −𝑘2𝑅(𝑥, 𝜔) + 𝑖2𝜔

𝑐
𝛼(𝑥, 𝜔) (5)

√

𝑘𝑅(𝑥, 𝜔) = −R(𝑅(𝜔)) (6)

3 
𝛼(𝑥, 𝜔) = I(𝑅(𝑥, 𝜔))𝑐
2𝜔

(7)

where R and I stand for real and imaginary part, respectively. This
approach works assuming a single mode is present in the wavefield
𝑢(𝑥, 𝜔). In practice, the Lamb wavefield is composed of several modes.
Therefore prior to applying Eqs. (4)–(7), a mode filter given by Eq. (2)
needs to be applied in frequency–wavenumber domain 𝑈 (𝑘, 𝜔) to iso-
late a single mode information. The use of the mode filter has an
additional benefit of reducing noise, which may greatly affect the local
estimation due to the numerical calculation of the Laplacian.

The Laplacian method has two applications in the identification
of material properties employed in this work. Firstly, the frequency-
dependent attenuation curves are used for the estimation of viscoelastic
material parameters. By fitting the imaginary part of the theoretical
dispersion curves to the experimental attenuation curves, the viscous
parameters of the material can be estimated. The viscous parame-
ters are included in the material model obtained from the inversion
procedure (Section 2.1) by adding the imaginary part to the elastic
parameters of the stiffness matrix 𝐶, resulting in a complex stiffness
matrix 𝐶𝑐 = 𝐶+𝑖𝐶 ′. Using 𝐶𝑐 in the calculation of theoretical dispersion
curves results in complex wavenumbers, where the imaginary part is
the attenuation of the Lamb modes. Therefore, the coefficients of the
𝐶 ′ matrix are treated as parameters to obtain a fit to the attenuation
plots.

Second, application of the Laplacian concerns the possibility to
obtain local wavenumber values to estimate material properties cor-
responding to the contamination layer. These frequency–wavenumber
values can once again be used in the inverse problem by fitting the
theoretical dispersion curves from a bi-layer plate model, consisting of
polypropylene and CaCO3 layers. Assuming that the properties of the
polypropylene are known from the previous analysis, the properties of
CaCO3 can be treated as unknowns in the inverse procedure. In the end,
knowing the material properties of both the polypropylene as well as
the CaCO3 layer allows for more advanced theoretical analysis of the
Lamb waves’ sensitivity to surface contaminants.

3. Description of the experiment

The sample used in the experiments is a polypropylene plate pro-
vided by the company Plastic Omnium. The sample is rectangular
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Fig. 2. Measurement setup for the parameter estimation. The Lamb waves are generated using a PZT transducer glued to the plate using epoxy adhesive and driven using the
arbitrary waveform generator. The responses from the surface of the plate are measured with a Laser Doppler Vibrometer (LDV) mounted on the XYZ scanning stage.
with approximate dimensions of 196 × 591 × 3.4 mm, disregarding
mounting elements. While the thickness of the plate varies by around
±0.1 mm in the inspected area, for the purpose of the further analysis
it is assumed constant. The experimental equipment used in this work
is presented in Fig. 2. For full-field signal acquisition, the Polytec OFV-
5000 Laser Doppler Vibrometer mounted on the XYZ scanning stage
is used. To simplify the measurement, the vibrometer laser beam is
oriented orthogonally to the surface of the plate, and the coordinates
of the scanning points are taken from the encoder of the XYZ stage.
The Lamb waves are excited using a PZT transducer glued to the
plate using epoxy adhesive and driven using the arbitrary waveform
generator Agilent 33220A. Additionally, inter-transducer measurements
are acquired by a second PZT transducer located on the other side of
the scanned area. The signals measured using LDV, PZT receiver, as
well as the excitation signal are recorded using a PicoScope 4000 series
oscilloscope. The examined sample is mounted vertically to a fixed post
using two clamps pressing on the top and bottom edges of the plate.

For the initial parameter estimation, a full-field scan is performed
on the area of 99 × 159 mm with a spatial sampling of 1.5 mm,
resulting in a mesh of 67 × 107 measurement points. The excitation
signal is a frequency sweep in the range between 1 and 400 kHz, with
an amplitude of 10 Vpp and a duration of 400 ms. The measured signals
are sampled at 1 MHz frequency, and pulse compressed to increase the
signal-to-noise ratio (SNR) [41]. The resulting data set is denoted as
DataA.

The surface contamination is applied using the procedure outlined
in Fig. 3. Different quantities of CaCO3 powder are mixed together
with small amount of water and poured into the 5 × 5 cm2 square
frame. To prevent the mixture from spilling, a rubber insulation layer
is used and the frame is pressed using two clamps. The sample is
left at room temperature until the water evaporates (around 16 h),
leaving only the CaCO3 layer on the given area. The preparation is
considered satisfactory if the contaminant layer adheres to the surface
of the sample, as it is placed in the vertical position for the full-field
measurement. The sample is prepared with CaCO3 masses of 0.067,
0.125, 0.25, 0.5 and 1 g, resulting in layers of different thicknesses.

After the contamination is applied to the plate, the full-field mea-
surements are performed on the area of 140 × 120 mm2 with spatial
sampling of 2 mm, resulting in a mesh of 71 × 61 measurement points.
Excitation is realized using a 100 ms frequency sweep in the range
between 1 and 300 kHz, with an amplitude of 10 Vpp. The wavefield
is also measured by a second transducer on the other side of the CaCO3
layer. After removing the contaminant from the surface of the plate, the
full-field and inter-transducer signals are acquired to obtain baseline
4 
data of the clean sample. After that, the new contamination level is
applied to the same sample, using the aforementioned procedure. The
data sets obtained from the measurements are denoted as DataC𝑏∕𝑐𝑚 ,
where 𝑚 is the mass of deposited CaCO3 and b/c indicates signals from
either the clean sample (baseline) b or with contamination c.

4. Estimation results from the polypropylene sample

4.1. Estimation of viscoelastic properties

In the first step, the elastic properties of the samples are estimated
using the procedure described in Section 2.1. The procedure is based
on the frequency–wavenumber dispersion curves 𝑈 (𝑘𝑥, 𝑘𝑦, 𝜔) calculated
from the entire full-field DataA 𝑢(𝑥, 𝑦, 𝑡) (snapshot in Fig. 4(a)) using 3D
Fourier Transform (see [42] for details). The dispersion curves along
the Y axis (𝑈 (0, 𝑘𝑌 , 𝜔)) in Fig. 4(b) show multiple modes, with the most
significant contribution of A0, S0 and A1. Furthermore, the initial ex-
amination of the dispersion curves in the 2D k-space (Fig. 4(c)) shows,
that the properties in the XY plane within the examined frequency
range are almost isotropic, as the wavenumbers in different directions
do not vary by more than 10%. On the other hand, it is impossible to
obtain a correct fit with a purely isotropic material model. Therefore,
a transversely isotropic model is assumed, with the axis of symmetry
oriented in the through-thickness direction of the plate (as depicted in
Fig. 4(d)). The density of the plate is assumed to be 950 kg/m3 accord-
ing to the manufacturer’s data. Therefore, there are five independent
unknown parameters with real values in the model: 𝐸1, 𝐸2, 𝜈13, 𝜈12
and 𝐺12. The initial parameter ranges as well as the settings for the
genetic algorithm are presented in the Tables 1 and 2, respectively.
The range of parameter space was chosen based on the manufacturer’s
data, which provided the order of magnitude for different parameters.
Additionally, a stopping criterion for the genetic algorithm was defined
in the form of a maximum number of generations with the same cost
function value. For the inversion procedure, the stopping criterion was
set to 150 consecutive values and it was reached before the maximum
number of iterations, indicating convergence of the algorithm. The
theoretical dispersion curves obtained from the inversion scheme are
presented in Fig. 4(e) (red curves), showing a very good match with
the experimental dispersion curves, especially for low order modes. The
full list of estimated elastic parameters is included in the first two rows
of Table 4. The parameters are presented as coefficients of the stiffness
matrix 𝐶 in the Voigt notation.

In the next step, the frequency dependent attenuation is estimated
using the Laplacian technique outlined in Section 2.2 with data DataA
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Fig. 3. Deposition of the calcium carbonate (CaCO3) layer on the Polypropylene plate: (a) clean plate with glued PZT transducers, (b) 5 × 5 cm2 frame with CaCO3 solution fixed
on the plate, (c) CaCO3 after the water evaporated.
Fig. 4. (a) Space–time snapshot of DataA. (b) Frequency–wavenumber dispersion curves from DataA. (c) 2D wavenumber dispersion curves from DataA for frequency 170 kHz
(d) Geometry of the transversely isotropic model with independent parameters indicated by a red color. (e) Theoretical dispersion curves of elastic model compared with the
experimental curves.
(snapshot in Fig. 5(a)). The estimation is performed for the three most
significant modes, according to the frequency–wavenumber spectrum
in Fig. 4(b): A0, S0 and A1. Each of these modes is filtered around
a manually selected central wavenumber 𝑘𝑐 , using the mode filter
𝑊 (𝑘, 𝜔) defined by Eq. (2) with 𝐵𝑚 = 15 m−1. After calculating the
attenuation map 𝛼(𝑥, 𝜔) according to Eq. (7), for each frequency 𝜔
a median filter with window size of 3 × 3 pixels is used to remove
measurement artefacts. An example of an attenuation map obtained
for the mode A0 is presented in Fig. 5(b). The local attenuation map
is slightly nonuniform, but at the bottom part there is a circular area
with significantly different attenuation. The estimates in that area result
5 
from near-source artefacts due to filtration operations. The mean atten-
uation for a given frequency is taken from the area indicated by the
red rectangle (including a total of 1496 values) in Figs. 5(a) and 5(b),
excluding the zone with artefacts. After calculating the attenuation map
for every mode (A0, S0 and A1) and for frequencies in the range be-
tween 20 and 200 kHz, the plot of the modal attenuation is obtained, as
shown in Fig. 5(c) (blue, red and green curves). The frequency range of
estimated values is narrower than the excitation frequency (1–400 kHz)
due to high attenuation of the structure, excitability characteristics of
the transducer and limited sensitivity of the measurement system. This
results in an insufficient SNR for frequencies above 200 kHz, leading
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Fig. 5. (a) Snapshot of the wavefield from DataA. (b) Local attenuation map for mode A0 and central frequency of 65 kHz. (c) Comparison between modal attenuation obtained
using Laplacian method (blue, red and green) and using curve fitting to the exponential decay equation (orange). (d) 2D mask based on attenuation curves in figure (c) with
added Gaussian window. (e) Comparison between experimental attenuation (blue, red, green) and imaginary part of estimated viscoelastic model (black). (f) Theoretical dispersion
curves calculated using elastic (red) and viscoelastic (blue) model.
Table 1
Value ranges assumed for the estimation of elastic parameters using genetic algorithm.
Thickness ℎ and density 𝜌 are assumed constant.

Parameter 𝐸1, 𝐸2 = 𝐸3 𝜈23, 𝜈13 = 𝜈12 𝐺12 𝜌 ℎ

Values 0.5–4 GPa 0.1–0.45 0.125–1.5 GPA 950 kg/m3 3.4 mm

to poor estimation quality. Therefore, only the attenuation estimates
up to 200 kHz are included in the figure. To validate this result, the
attenuation was also estimated using a method based on fitting the
formula of exponential wave decay with distance, as outlined in [43].
The result of applying the exponential wave decay method to individual
Lamb modes is shown as an orange plot in Fig. 5(c). The curves
obtained using the Laplacian and the curve fitting to the exponential
decay formula match very well.

Knowing the elastic parameters 𝐶 and attenuation 𝛼, the viscous
parameters 𝐶 ′ are estimated by fitting the imaginary part of theoretical
dispersion curves to the attenuation plots in Fig. 5(c), using the ap-
proach described in Section 2.2. In order to directly apply the inversion
procedure outlined in Fig. 1, a 2D mask is created based on attenu-
ation curves, with Gaussian window applied at each frequency. The
resulting mask is presented in Fig. 5(d). This mask is then multiplied
with the mask obtained from imaginary part of theoretical dispersion
curves and subsequently summing all the values, resulting in the fitness
value 𝐹 . The viscous parameter ranges in the inversion procedure are
assumed as shown in Table 3. Additionally, the dispersion curves are
calculated using parameters 𝐶 listed in the two first rows of Table 4,
as well as thickness and density in Table 1. The settings of genetic
algorithm are listed in Table 2, same as in the previous inversions. The
inversion procedure for viscous parameters ended prematurely, as the
stop criterion of 150 consecutive fitness values with unchanging best fit
value was reached. The estimated viscous parameters with best fitness
are presented in the third and fourth rows of Table 4. The imaginary
part of dispersion curves (black points) for obtained viscous parameters
6 
match the attenuation curves (blue, red and green points) very well, as
depicted in Fig. 5(e). The real part of the dispersion curves calculated
using a full viscoelastic model 𝐶𝑐 is presented in Fig. 5(f), and compared
to the dispersion curves obtained with just the elastic components 𝐶.
For a more clear comparison, the frequency–wavenumber points with
very high imaginary part are removed from the plot. In the given
frequency range, the curves obtained with the viscoelastic model match
the elastic model very well. The most significant differences between
the two models occur at the points with highest attenuation, e.g. close
to the cutoff frequencies.

4.2. CaCO3 parameters estimation

The Laplacian algorithm was applied to all data sets with CaCO3
of DataC𝑚 to estimate local wavenumbers of the contamination area.
Examples of wavenumber maps obtained for baseline data DataC𝑏1 cal-
culated using the modes A0 and A1 are presented in Figs. 6(a) and 6(b)
respectively, and maps for the same modes with added contamination
from data DataC𝑐1 (1 g of CaCO3) are shown in Figs. 6(c) and 6(d). The
baseline maps in Figs. 6(a) and 6(b) show nonuniform wavenumber
estimates, resulting from material inhomogeneity and slight anisotropy
in the XY plane. The wavenumber values in the baseline maps do not
differ by more than 10%, which is consistent with initial examination
of the anisotropy of the 𝑈 (𝑘𝑥, 𝑘𝑦) dispersion curves, as described in
Section 4.1. Looking at the maps with 1 g of CaCO3, we can see a
clear increase in local wavenumber in the central area, where the
contamination was applied. Therefore, local dispersion properties of
individual modes are clearly affected by adding a layer of contaminant.
To illustrate these changes, for each frequency the local wavenumber
values are averaged from the area indicated by the red rectangle. The
rectangle is chosen to be smaller than the extent of the contamination
to avoid spurious wavenumber artefacts resulting from effects at the
edge of the contaminant (e.g. due to wave scattering). The resulting
frequency–wavenumber pairs are presented in Fig. 7(a), as colored
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Table 2
Settings of the genetic algorithm.
Setting name Mutation

probability
Crossover
probability

Tournament
probability

Mutation
scale

Generations Population
size

Stop
criterion

Setting value 0.2 0.7 0.4 0.1 1000 40 150
Fig. 6. Local wavenumber maps calculated using the Laplacian method for (a,b) DataC𝑏
1 and (c,d) DataC𝑐

1.
Table 3
Value ranges assumed for the estimation of viscous parameters using genetic
algorithm.

Parameter 𝐶 ′
11 𝐶 ′

22 = 𝐶 ′
33 𝐶 ′

23 𝐶 ′
12 = 𝐶 ′

13 𝐶 ′
55 = 𝐶 ′

66

Value (GPa) 0.1–0.3 0.1–0.3 0.05–0.15 0.05–0.15 0.05–0.15

Table 4
The elastic 𝐶 and viscous 𝐶 ′ parameters estimated for polypropylene plate.

Elastic parameters 𝐶11 𝐶22 = 𝐶33 𝐶12 = 𝐶13 𝐶23 𝐶55 = 𝐶66

Value (GPa) 3.974 5.67 3.004 3.886 0.66

Viscous parameters 𝐶 ′
11 𝐶 ′

22 = 𝐶 ′
33 𝐶 ′

12 = 𝐶 ′
13 𝐶 ′

23 𝐶 ′
55 = 𝐶 ′

66

Value (GPa) 1.746 0.288 0.095 0.146 0.06

dash-circle plots. It is evident from the plots, that the addition of
contamination affects all the modes, but the increase in wavenumber
values is most evident for the A1 mode (as shown on the close-up
in Fig. 7(b)). Similarly to the attenuation estimation procedure for
the polypropylene plate, the SNR of higher frequency components is
not high enough to obtain accurate estimates of local wavenumbers.
Therefore, only the wavenumber components lower than 200 kHz were
included. In order to estimate the properties of the CaCO3 contamina-
tion, the inversion procedure is applied once more, this time assuming
a simplified isotropic model of CaCO3. For the calculation of dispersion
curves in the inversion procedure, the bi-layer plate model is used
instead of a single-layer model. The parameters of CaCO3 are treated as
unknowns, namely: Young’s Modulus 𝐸, Poisson’s ratio 𝜈 and density
𝜌. For the polypropylene substrate, the elastic properties estimated in
Section 4.1 are used and the viscous parameters are neglected due to
their small influence on the dispersion curves in the given frequency
range. The thickness of the CaCO3 layer for the calculation of theoret-
ical dispersion curves is derived from the mass, estimated density and
7 
the assumption, that the layer was distributed evenly over the area of
5 × 5 cm2 during the sample preparation, obtaining a roughly uniform
density. The initial settings of the genetic algorithm are the same as
presented in Table 2. The stopping criterion value was again set to 150
consecutive generations with the same cost value and the algorithm
converged before reaching maximum number of iterations.

Using this inversion procedure, the following properties of the
CaCO3 are obtained: 𝐸 = 0.972 GPa, 𝜈 = 0.09 and 𝜌 = 1102 k g∕m3. It
must be stressed, however, that the Poisson’s ratio does not significantly
influence the dispersion curves in this frequency range, and should
be considered unknown. However, despite not fully representing the
physical properties of the layer, this model can serve as a way to predict
the sensitivity of the Lamb waves to contamination during monitoring.
Dispersion curves calculated using these properties are demonstrated
in Figs. 7(a) and 7(b) as grey scale lines. The curves are calculated for
thickness values corresponding to various mass quantities distributed
over the area of 5 × 5 cm2. Presenting the theoretical curves for
mass rather than the thickness makes them easier to compare with the
experimental data. Figs. 7(a) and 7(b) show a very good match between
experimental data and the model. Fig. 7(c) presents the frequency-
group velocity dispersion curves, which indicates how the time-of-flight
of transmitted Lamb modes would be affected by a CaCO3 layer. The
plots are calculated for thickness values ranging from 0 to 0.363 mm,
which are equivalent to the masses in Fig. 7(a) distributed over area of
5 × 5 cm2.

Using the bi-layer plate model, we performed a sensitivity analysis
of Lamb waves to surface contamination in the form of CaCO3 on the
surface of a polypropylene plate. To that end, the partial derivative of
each mode with respect to the contaminant thickness ( 𝑑 𝑉

𝑑 𝐻 ) is repre-
sented as a function of frequency in Figs. 7(d)–7(f). High values of the
derivative indicate, that the group velocity plots are more significantly
affected by change in the thickness of the contaminant layer. Based
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Fig. 7. (a,b) Comparison between local wavenumber estimates from the contamination area in DataC0−1 and dispersion curves from fitted bi-layer model. (c) Theoretical group
velocity plots for different thickness of CaCO3. Sensitivity analysis based on partial derivative of group velocities over thickness of CaCO3 layer ( 𝑑 𝑉

𝑑 𝐻 ) for modes (d) A0, (e) S0, (f)
A1.
on these sensitivity plots, it is possible to select the most appropriate
modes and frequency ranges for the detection of surface contaminants
using Lamb waves.

5. Discussion and the application to monitoring

The sensitivity plots in Figs. 7(d)–7(f) show that modes A0 and S0
are weakly affected by the contaminant layer below 120 kHz, as their
group velocities do not change significantly with respect to the clean
plate. The sensitivity of A0 mode becomes significant at frequencies
higher than 200 kHz, as the group velocity dispersion curves begin
to diverge more significantly. However, due to the high attenuation
of polypropylene, it may not be possible to transmit these frequencies
between transducers over longer distances. The S0 mode appears to be
sensitive to the contamination layer between 150 kHz and 200 kHz.
In this frequency range, changes in the thickness of the CaCO3 result
in a more pronounced divergence of the dispersion curves with respect
to a clean plate. For higher frequencies, the S0 plots converge again,
as shown in Fig. 7(c), resulting in a significant sensitivity drop in
Fig. 7(e) (dark-blue colored region). For mode A1, the sensitivity values
are overall the highest, apart from the narrow frequency bandwidth
between 150 kHz and 170 kHz, which corresponds to the crossing of
the dispersion curves (see Fig. 7(c)). Overall, the A1 maintains high
sensitivity near the cutoff frequency and for frequencies higher than
the crossing point. However, similar to A0 mode, it would be difficult
to propagate and detect higher frequency components of mode A1 over
longer distances due to high attenuation of the substrate, as evident
from Fig. 5(c), so the useful frequency of A1 is in the range from
125 kHz to 200 kHz.

The sensitivity analysis presented in Fig. 7 can be used to design
the monitoring strategy using a network of transducers. To demon-
strate the validity of the performed analysis, the signals obtained
8 
from the inter-transducer measurements from datasets DataC0.06−1 are
processed. These inter-transducer measurements used the same exci-
tation as full-field measurements, meaning that modes A0, S0 and A1
will be recorded by a receiving transducer. Signals obtained from the
measurement DataC0.25 are presented in Fig. 8(a). The signals were
then filtered to two frequency bands: 0–100 Hz and 120–200 kHz.
The first band is expected to contain modes with weak sensitivity
to surface contaminations (A0 and S0), while the second band will
contain more sensitive modes (S0 and A1). For frequencies 0 to 100 kHz
(Fig. 8(b)), the differences between the baseline DataC𝑏0.25 and the
signal from the sample with contamination DataC𝑐0.25 are very minimal.
For frequencies 120 to 200 kHz (Fig. 8(c)), a noticeable time shift
appears between DataC𝑏0.25 and DataC𝑐0.25. In order to quantify these
differences, a Difference Index (DI) [44] is calculated between baselines
and signals from samples with contaminations for all the deposited
masses DataC0.06−1, according to the formula:

𝐷 𝐼 =
∑

𝑡(𝑌 (𝑡) −𝑋(𝑡))2
∑

𝑡(𝑋(𝑡))2
, (8)

where 𝑋(𝑡) is the envelope of the baseline signal and 𝑌 (𝑡) is the
envelope of a signal from the sample with contamination. The DI is
calculated separately for the bands 0–100 kHz (Fig. 8(d)) and 120–
200 kHz (Fig. 8(e)). The DI value for a clean plate is an average of DI’s
calculated between different baseline signals, acquired before and after
depositing every CaCO3 layer. Therefore, from six baseline signals five
DI values are calculated. Moreover, using these baseline DI’s a simple
detection threshold is established as a mean value plus three times
standard deviation. These detection thresholds are plotted on Figs. 8(d)
and 8(e) as dashed red lines. As evident from the plots, the DI’s for
the band 0–100 kHz exceed the detection threshold only at 0.5 and 1 g
mass. On the other hand, the DI’s for the band 120–200 kHz exceed the
threshold starting from 0.125 g. Therefore, the sensitivity to CaCO is
3
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Fig. 8. (a) Time signals with and without contamination from dataset DataC0.25. Signals filtered for the frequency band (b) 0–100 kHz and (c) 120–200 kHz. Signal difference
index plotted versus mass of deposited CaCO3 for signals filtered to (d) 0–100 kHz and (e) 120–200 kHz.
much higher for 120–200 kHz, which is consistent with the sensitivity
analysis presented in Fig. 7.

6. Conclusions

An inversion scheme was applied to estimate viscoelastic param-
eters of the polypropylene plate based on full-field measurements of
Lamb waves. A transversely isotropic material model with the axis of
symmetry in the through-thickness direction provided a good approx-
imation of the plate’s properties. In the next step, a simplified model
of CaCO3 contamination was proposed based on the local wavenumber
estimates calculated using the Laplacian of the full-field measurement
data. Based on the estimated effective properties, the sensitivity study
was performed to determine the most suitable Lamb modes and fre-
quency bands for the detection of CaCO3 contamination. Finally, simple
through-transmission measurements using two PZT transducers were
performed to confirm the validity of the sensitivity study. The re-
sults of these measurements were consistent with the models for the
polypropylene plate with CaCO3 contamination.

These results can be used to determine the minimum amount of
contamination that can be detected using a monitoring system. Due
to high material attenuation the frequency bandwidth of Lamb waves
that could be used for characterization is limited. As a result, the
assumed material models for both the polypropylene plate and the
CaCO3 contamination are simplified, and may not represent ground
truth, especially the properties of CaCO3. However, this model cor-
rectly predicts the sensitivity of Lamb waves in the frequencies below
200 kHz, which is sufficient for a monitoring system working in the
low-power consumption regime. In further work, the system could be
used to not only detect but also to localize the contamination, e.g. using
a tomography setup.
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Appendix. Engineering constants to elastic matrix conversion

The elastic stiffness matrix 𝐶𝑖𝑗 can be expressed with respect to the
engineering constants, namely Young’s modulus 𝐸𝑖, Poisson’s ratio 𝜈𝑖𝑗 ,
and shear modulus 𝐺𝑖𝑗 , where subscripts 𝑖 and 𝑗 indicate axes in the
Cartesian coordinates system 𝑥1, 𝑥2, 𝑥3 (i.e., 𝑖, 𝑗 = 1, 2, 3). Assuming an
orthotropic material model with 9 independent parameters, the rela-
tionship between engineering constants and coefficients of the matrix
𝐶𝑖𝑗 is given by the following equations [40]:

𝐶11 =
(1 − 𝜈23𝜈32)𝐸1

𝑁

𝐶22 =
(1 − 𝜈13𝜈31)𝐸2

𝑁

𝐶33 =
(1 − 𝜈12𝜈21)𝐸3

𝑁

𝐶12 =
(𝜈21 + 𝜈31𝜈23)𝐸1

𝑁
=

(𝜈12 + 𝜈32𝜈13)𝐸2
𝑁

𝐶13 =
(𝜈31 + 𝜈21𝜈32)𝐸1

𝑁
=

(𝜈13 + 𝜈12𝜈23)𝐸3
𝑁

𝐶23 =
(𝜈32 + 𝜈12𝜈31)𝐸2

𝑁
=

(𝜈23 + 𝜈21𝜈13)𝐸3
𝑁

𝐶44 =𝐺23, 𝐶55 = 𝐺31, 𝐶66 = 𝐺12

(A.1)

where 𝑁 is a factor given by:
𝑁 = 1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈21𝜈32𝜈13 (A.2)
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The material with transverse isotropy consists of an axis of symmetry
1 orthogonal to the plane of isotropy 𝑥2, 𝑥3. This material symmetry

results in five independent engineering coefficients: 𝐸1, 𝐸2, 𝜈12, 𝜈23
nd 𝐺12. The corresponding coefficients of the 𝐶𝑖𝑗 matrix are given as
ollows:

𝐶11 =
(1 − 𝜈23𝜈32)𝐸1

𝑁

22 =
(1 − 𝜈12𝜈21)𝐸2

𝑁
= 𝐶33

12 =
(𝜈21 + 𝜈21𝜈23)𝐸1

𝑁
= 𝐶13

𝐶23 =
(𝜈32 + 𝜈12𝜈21)𝐸2

𝑁
𝐶55 = 𝐺12 = 𝐶66

𝐶44 = 0.5(𝐶22 − 𝐶23)

(A.3)
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