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ABSTRACT

Electroelastic waves in piezoelectric media are widely used in sensing and filtering applications. Despite extensive research, computing the
guided wave dispersion remains challenging. This paper presents semi-analytical approaches based on spectral methods to efficiently and
reliably compute dispersion curves. We systematically assess the impact of electrical boundary conditions on a 128! Y-cut LiNbO3 wafer,
examining open–open, open–shorted, and shorted–shorted surface configurations. Multi-modal dispersion maps obtained from laser-ultra-
sonic experiments for each boundary condition exhibit excellent agreement with the computational predictions. A straightforward imple-
mentation of the spectral collocation method is made available as GEW piezo plate (https://doi.org/10.5281/zenodo.14205789), while the
spectral element method is integrated to GEWtool (http://doi.org/10.5281/zenodo.10114243) for multilayered plates. Therewith, we aim to
make advanced semi-analytical techniques more accessible to physicists and engineers relying on dispersion analysis.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0250494

I. INTRODUCTION

In a waveguide, waves are constrained to travel along a defined
path due to boundaries that channel the energy.1,2 Guided elastic
waves have applications in non-destructive testing,3 material
characterization,4–7 and sensing.8,9 If the waveguide’s material is
piezoelectric, the mechanical and electrical fields are coupled,
resulting in electroelastic waves.1,10–13 These have found widespread
applications in micro-electromechanical systems (MEMS), e.g., as
surface acoustic wave (SAW) devices for signal processing and
sensing.14 In other devices, such as bulk acoustic wave filters, spuri-
ous guided modes need to be avoided.15 Due to technological
advances in materials, thin film technology, and further develop-
ment of MEMS devices, application-driven research on guided
waves in piezoelectric plates is still very active today.16–19

Electroelastic waves in piezoelectric media are well studied. The
theoretical fundamentals are covered in classic textbooks.1,2,10 The
initial work describes the propagation of bulk waves.12,13 Work on
modeling guided waves in piezoelectric plates was pioneered by

Tiersten,20 who considered metallized surfaces while restricting
propagation to two specific directions. Later, fundamental modes
propagating along principal directions with open (unmetallized)
and shorted (metallized) surfaces were studied by Joshi and Jin21

and validated experimentally with interdigital transducers.
Syngellakis and Lee22 extended the modeling to arbitrary anisotropy
and propagation direction and computed the dispersion of electri-
cally shorted higher-order modes. Electrically open modes at differ-
ent propagation directions were computed by Kuznetsova et al.23

Sun et al.24 presented solutions for open–open, open–shorted, and
shorted–shorted surfaces. A periodic grating of open and shorted
regions can be used to design phononic crystals with tunable bandg-
aps.25 Guo et al.26 analyzed multilayered piezoelectric plates based
on a state-space formalism. Last, Zhu et al.27 accounted for the elec-
trical losses in the metallized surfaces of plates.

Root-searching of the characteristic equations was used in all
previously mentioned studies (except the phononic crystal) to
compute dispersion curves. Although this method is known to be
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slow and to miss solutions, it is still prevalent today. A software
based on root-searching was made available in 1990 by Adler28 and
is still actively being used.29,30 An alternative treatment of the tran-
scendental characteristic equations is by analytic approximations
for limiting cases.31

In contrast to root-searching of the characteristic equations,
semi-analytical methods discretize the waveguide cross section and
then solve a standard algebraic eigenvalue problem to reliably and
efficiently obtain solutions. Various discretization methods have
been used for semi-analytical models of piezoelectric waveguides.
Finite elements were used very early by Lagasse32 for ridge and
wedge guides, while Cortes et al.33 treated multilayered plates.
Spectral methods are based on a global function basis to expand
the field and are particularly well-suited for layered structures. In
this context, Laguerre polynomials were used for surface waves34,35

and Legendre polynomials36 for plates. Laude et al.37 used a
Fourier series representation but encountered difficulties due to the
non-vanishing electrical field outside the plate. Despite the advan-
tages of semi-analytical methods, their widespread adoption is hin-
dered by the lack of publicly available implementations and the
relatively high level of knowledge on numerical computing required
to implement them.

From an experimental point of view, laser-based ultrasound
(LUS) has proven to be a valuable tool to precisely resolve the
multi-modal dispersion curves of plates5,38–41 and to access specific
modes in the response spectrum.4,7,42–45 Importantly, the contact-
free operation of LUS allows for flexible scanning of the wave field
under various environmental and boundary conditions. This is par-
ticularly valuable for model validation and for inverse characteriza-
tion of material parameters. We are aware of two studies46,47 that
present LUS measurements of piezoelectric plates, but the effect of
electrical BCs was not examined therein.

In this work, we present a semi-analytical model for guided
electroelastic waves in piezoelectric plates based on spectral
methods. Our focus lies on the highly instructive spectral colloca-
tion method (SCM).48–50 The SCM was previously shown to be
efficient and robust to compute dispersion of purely elastic
waves.51,52 Its main advantage is the straightforward implementa-
tion based on the underlying partial differential equations in their
conventional strong form. The SCM code by Kiefer53 is extended
to piezoelectric plates, and we make our implementation publicly
available under the name GEW piezo plate.54 As an alternative,
highly related method, we also introduce the spectral element
method (SEM)55,56 in Appendix A. While it is numerically superior
to the SCM, it is at the same time conceptually more intricate. Our
SEM implementation will be provided in GEWtool,57 a software
for guided wave analysis. Overall, we hope to demonstrate with this
contribution the power of spectral methods, the simplicity of SCM,
and contribute to a wider adoption of semi-analytical methods for
dispersion computations. Furthermore, we validate our model with
LUS experiments and contribute a compilation of multi-modal
guided wave spectra in LiNbO3 wafers, including two different
propagation directions and three different electrical BCs.

This paper is organized in the following way: in Sec. II, we
derive the guided wave problem in piezoelectric media, with focus
on the treatment of electrical BCs. The implementation of the SCM
is explained in Sec. III, and computational results are presented in

Sec. IV. Our LUS system is described in Sec. V. Last, measurement
results are presented and discussed in Sec. VI before we conclude
in Sec. VII.

II. MODELING ELECTROELASTIC WAVES

Assuming a quasi-static electric field, we model waves in the
piezoelectric medium in terms of the mechanical displacements ~u
and the electric potential ~f. The electric field intensity is "∇~f.
The piezoelectric constitutive equations relate the mechanical stress
~T and electric flux density ~D to ~u and ~f by2,10,20,58

~T ¼ c :∇~uþ ∇~f % e, (1a)

~D ¼ e :∇~u" ϵ % ∇~f, (1b)

where c is the fourth-order stiffness tensor at constant electric field
intensity, e the third order piezoelectric coupling tensor, and ϵ the
second-order permittivity tensor at constant mechanical strain.58

For a time-harmonic field at angular frequency ω ¼ 2πf , the
balance of linear momentum, i.e., ∇ % ~Tþ ρω2~u ¼ 0, must hold
given the mass density ρ. Moreover, without free electrical charges
in the material, ∇ % ~D ¼ 0. On account of (1), the governing equa-
tions are1,20

∇ % (c :∇~u)þ ∇ % (∇~f % e)þ ρω2~u ¼ 0, (2a)

∇ % (e :∇~u)" ∇ % (ϵ % ∇~f) ¼ 0: (2b)

We are interested in plane waves with wavenumber k propa-
gating in a plate of thickness h but otherwise infinite extent; see
Fig. 1. The exeyez-coordinate system (where ei with one index are
the unit directional vectors) is aligned with the wave propagation
such that the wave vector is along ex , while ez is the normal to the
plate’s surfaces. The spatiotemporal field is then of the form

~u(x, y, z, t) ¼ u(k, z, ω)eikx"iωt (3a)

~f(x, y, z, t) ¼ f(k, z, ω)eikx"iωt , (3b)

with z [ ("h=2, h=2). We proceed as was done for the elastic
case in Ref. 59. In account of the ansatz (3), we can use
∇ : ¼ ikex þ @zez in (2). Multiplying out, defining the second-order
tensors cij ¼ ei % c % e j, the first-order tensors eij ¼ ei % e % e j and the
scalars ϵij ¼ ei % ϵ % e j and re-grouping we obtain for the60

balance of linear momentum :
h
(ik)2cxx þ ik(cxz þ czx)@z þ czz@2

z

i
% uþ ρω2u

þ
h
(ik)2exx þ ik(exz þ ezx)@z þ ezz@2

z

i
f ¼ 0, (4a)

balance of charges :
h
(ik)2exx þ ik(exz þ ezx)@z þ ezz@2

z

i
% u

þ
h
(ik)2ϵxx þ ik(ϵxz þ ϵzx)@z þ ϵzz@2

z

i
f ¼ 0: (4b)
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The above equations must hold across the thickness of the plate,
i.e., for z [ (" h=2, h=2). Note that common materials are non-
gyrotropic,61 meaning that their off-diagonal permittivity compo-
nents ϵxz and ϵzx vanish. Nevertheless, we retain the corresponding
term in (4b) for the sake of generality.

BCs are needed to complement (4). The plate shall be
mechanically free; i.e., the tractions ez % ~T vanish at the surfaces
z ¼ +h=2. Using (1a) and the plane wave ansatz (3), this reads60

ik[czx % uþ exzf]þ czz@z % uþ ezz@zf ¼ 0, z ¼ +h=2: (5)

From an electrical point of view, two different kinds of BCs will be
studied: (i) shorted/metallized surfaces that model an infinitely
thin, perfectly conducting coating as sketched in Fig. 1(a) and
(ii) the electrically open (non-metallized) surface as shown in
Fig. 1(b). Any combination of these two conditions is possible at
the two surfaces of the plate. If the plate is shorted at z ¼ +h=2,

f ¼ 0 at z ¼ +h=2: (6)

The open case is somewhat more intricate. Often, ez % ~D ¼ 0 has
been used,34,35 forcing the electric energy to be confined within the
plate. Except for kh & 1, this tends to be a very good approxima-
tion because the permittivity of the piezoelectric material is usually
much higher than that in vacuum.32 However, the electric field in
the exterior vacuum is actually nonzero, and this should be
accounted for with appropriate interface conditions at the plate’s
surfaces. As has been shown previously,21,27 this amounts to model-
ing inhomogeneous Neumann BCs involving the wavenumber. We
pursue this approach, as the computational costs are similar and
the modeling is not very complicated.

As the field is a plane harmonic wave in the plate, this must
also be the case in the exterior. For z . h=2, we have
~f
a ¼ faeik

a
z (z"h=2)þikx"iωt , where Snell’s law has been used. In the

vacuum, ~D
a ¼ "ϵ0∇~f

a
and ∇ % ~Da ¼ 0, from where kaz ¼ +ik is

obtained. ϵ0 is the permittivity of vacuum. The sign of kaz is chosen

such that fa ! 0 as z ! 1. A similar analysis for the field below
the plate shows that the opposite sign must be chosen for kbz . Note
that the field is purely evanescent along z and carries no energy
away from the plate, in accordance with the quasi-static approxima-
tion. If the plate is open at the top surface, the normal electrical
flux density is required to be continuous across this interface;
i.e., ez % ~D ¼ ez % ~D

a=b
at h=2. Using (1b) and (3), the continuity at

z ¼ h=2 reads

ez %D ¼ [ikezx þ ezz@z] % u" [ikϵzx þ ϵzz@z]f ¼ "iϵ0ikfa, (7)

which represents an inhomogeneous Neumann BC (the right-hand
side is nonzero). Next, we also impose continuity of the electrical
potential; i.e., fa ¼ f(h=2). Accounting for this and re-arranging
in terms of ik finally yields the open-plate conditions at z ¼ +h=2,
namely,

ik[ezx % u" ϵzxf+ iϵ0f]þ ezz@z % u" ϵzz@zf ¼ 0, (8)

where the positive sign is for the top surface at z . 0. Note that
with ϵ0 ¼ 0, this condition is identical to the commonly used
approximation ez % ~D ¼ 0 at the surface.

III. CALCULATION OF DISPERSION CURVES USING
THE SCM

The computational method proceeds in three steps:

1. Re-write the governing equations (4) and the Neumann BCs (5)
and (8) in matrix form.

2. Discretize both differential systems.
3. Incorporate the discrete BCs into the governing system.

Optionally, replace the Neumann BCs with Dirichlet BCs.

In this way, an algebraic linear system is obtained that can be
solved on a computer using standard techniques in order to obtain
the desired guided wave solutions.

First, we collect the unknown field variables in the 4' 1-block
matrix (first block of size 3 and second block of size 1),

Ψ ¼ u
f

! "
, (9)

and assemble the governing equations (4a) and (4b) into one matrix
equation in terms of Ψ, which yields

(ik)2Aþ ik(Bþ BT )@z þ C@2
z þ ω2M

# $
Ψ ¼ 0, (10)

with matrices

A ¼ cxx exx
eTxx "ϵxx

! "
, B ¼ czx exz

eTzx "ϵzx

! "
, (11a)

C ¼ czz ezz
eTzz "ϵzz

! "
, M ¼ ρI 0

0 0

! "
: (11b)

Therefore, we have exploited the symmetries cxz ¼ cTzx and ϵxz
¼ ϵzx in writing the term in Bþ BT (but note that exz = eTzx in B).

FIG. 1. Cross-sectional sketch of the piezoelectric plate. (a) Electrically shorted
surfaces confine the field inside the plate, while (b) non-metallized surfaces lead
to a nonzero electric field in the surrounding vacuum.
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Moreover, I is the second-order identity tensor, “0” are zero-
matrices of appropriate size, and all tensors are to be interpreted as
the corresponding coefficient matrices. Assembling in a similar way
the mechanical and electrical Neumann BCs (5) and (8) into a
matrix equation gives

ik(Bþ V)þ C@z½ )Ψ ¼ 0, (12)

where V is the block matrix,

V ¼ 0 0
0 +iϵ0

! "
, (13)

which accounts for the nonzero electrical flux density into the
vacuum domain. The positive/negative sign is for the top/bottom
boundary, respectively. For the moment, we do not need to deal
with the Dirichlet BC (6) that describes shorted electrodes as it will
be implemented after discretization by eliminating the correspond-
ing degree of freedom, i.e., f(+h=2), which is known in advance to
be zero.

Second, a large number of numerical discretization techniques
could be used to obtain algebraic approximations to the boundary-
value problem (10) and (12). For the numerically superior SEM, we
refer to Appendix A and instead focus on the more instructive
SCM in the following. The SCM is particularly simple to imple-
ment as it does not require a weak formulation nor previous
meshing of the geometry. Furthermore, it exhibits exponential con-
vergence when increasing the degrees of freedom, leading to small
matrices. The Chebyshev SCM approximates an unknown function
f(z) by a weighted superposition of the first N Chebyshev polyno-
mials, and the error is then minimized on N so-called Chebyshev–
Gauß–Lobatto collocation points zi, i [ {1 . . .N}. For details on
the SCM, refer to the standard literature.48,49 For implementation
purposes, it is important that the method allows for the explicit
construction of a differentiation matrix Dz . To explain its meaning,
assume that fd ¼ [f(zi)] is the mathematical vector that collects
the values of f(z) at all collocation points zi, and f0

d is the vector
collecting the corresponding values of @zf(z). The differentiation
matrix relates these two vectors through f0

d * Dzfd, providing a
discrete counterpart to the differentiation operation. We use the
MATLAB package DMSUITE50 by Weideman and Reddy to gener-
ate the differentiation matrices Dz and D2

z of size N ' N .
The discretization of (10) is performed by formally mapping

@z ↦ Dz , @2
z ↦ D2

z , and for the @z-independent terms 1 ↦ Id,
where Id is the N ' N-identity matrix. Thereby, the component-
wise multiplication of @z , @2

z , or 1 with the matrices A, B, C, or M
become Kronecker products,62 which we denote by “+.” Overall,
the discrete approximation to (10) is

(ik)2~L2 þ ik~L1 þ ~L0 þ ω2 ~M
# $

Ψd ¼ 0, (14)

with 4N ' 4N matrices,

~L2 ¼ A+ Id, ~L1 ¼ (Bþ BT)+ Dz , (15)

~L0 ¼ C + D2
z , ~M ¼ M+ Id: (16)

Proceeding in the same way for the Neumann BC in (12) yields

ikB1 þ B0½ )Ψd ¼ 0, (17)

with

B1 ¼ (Bþ V)+ Id, B0 ¼ C + Dz: (18)

Third, only the equations at z ¼ +h=2 are needed from (17),
i.e., the equation numbers j [ {1, N , N þ 1, 2N , 2N þ 1, 3N ,
3N þ 1, 4N}. These BCs are incorporated into the discrete algebraic
system (14) by replacing the rows j of ~Li and ~M with the corre-
sponding rows of Bi or zero if the term is not present in (17). The
resulting matrices are denoted L2, L1, L0, and M. In this way, we
obtain the linear system

(ik)2L2 þ ikL1 þ L0 þ ω2M
# $

Ψd ¼ 0 (19)

that fully describes plane harmonic electroelastic waves in the plate.
For now, the surfaces are both electrically open as depicted in
Fig. 1(b). If the plate is to be shorted at the surface corresponding
to the ith collocation point zi, we simply remove the 3N þ ith row
and column of all matrices (the first 3N corresponds to displace-
ment degrees of freedom), thereby replacing the open condition
with the Dirichlet condition given in (6).

Equation (19) represents an algebraic eigenvalue problem. By
fixing k ¼ k0, we may compute the eigenvalues ω2

n with standard
techniques, e.g., eig in MATLAB. We remark that M is a singular
matrix, leading to some restrictions on the choice of the eigenvalue
solver. Nonetheless, modern methods appropriately handle this
case. It is also possible to do the reverse and fix the angular fre-
quency ω ¼ ω0 in order to compute the eigenvalues ikn. This qua-
dratic eigenvalue problem can be solved by standard companion
linearization techniques as implemented in MATLAB’s polyeig.
Note that even for real frequencies, this approach yields a complex-
valued wavenumber spectrum;1 see Appendix D. In either case, the
eigenvectors Ψd provide access to the mechanical and electrical
field distributions u(zi) and f(zi).

Our computations show very good agreement with those pub-
lished by Kuznetsova et al.;23 see Appendix B. Note that the higher
the modal order (i.e., the higher the frequency), the larger the
number of discretization points N needs to be. To ensure six-digit
accuracy with the SCM, we use N ¼ 20 in all subsequent com-
putations. An extended convergence analysis is presented in
Appendix B. All numerical experiments are performed on one core
of an Apple M1 Pro processor. Our SCM implementation uses the
QZ-algorithm from MATLAB’s eig-function to compute a set of
dispersion curves at 120 k-values in 0.7 s (6 ms per k-value). The
SEM implementation in GEWtool computes the same example in
0.6 s (5 ms per k-value), which is slightly faster thanks to the sym-
metry of the SEM matrices. However, per default GEWtool exploits
subspace methods (eigs) and sparse matrix representation. 25
modes are located in this way in only 0.25 s (2 ms per k-value).

The presented computational method is rather easily extended
to multilayered plates.52 This is particularly interesting for MEMS
devices, which often consist of layered structures. The layers can
include piezoelectric, dielectric, and metallic media. Electrical

Journal of
Applied Physics ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 137, 114502 (2025); doi: 10.1063/5.0250494 137, 114502-4

© Author(s) 2025

 21 M
arch 2025 15:29:39

https://pubs.aip.org/aip/jap


currents in the latter can lead to losses, and this can be accounted
for by modeling a complex effective permittivity. These extensions
are concisely discussed in Appendix C for the interested reader.

IV. WAVES IN A LiNbO3 WAFER

We now investigate guided waves in a 510 μm-thick mono-
crystalline 128! Y-cut lithium niobate (LiNbO3) wafer. This mate-
rial is often used for MEMS as it exhibits large electromechanical
coupling.61,63 The material parameters are given in Appendix E. To
account for the crystal orientation in the computation, we need to
rotate the tensors c, e, and ϵ—which are initially given64 in the
orthonormal eXeYeZ-material coordinate system (Fig. 3)—to the
wave propagation frame exeyez (Fig. 1). Here, eX lies within the
wafer surface and is perpendicular to the wafer flat. The material’s
eZ axis (eY axis) has been rotated out of the plate’s normal ez by an
angle of μ ¼ 38! (μ ¼ 128!) around eX .

Two directions of propagation are considered: (i) along X and
(ii) along X þ 90!, i.e., along the wafer flat; see Fig. 3. Furthermore,
three different combinations of electrical BCs are systematically
investigated: shorted–shorted, open–shorted, and open–open. The
different BCs are compared in Fig. 2(a) for propagation along X
and in Fig. 2(b) for propagation in X þ 90!. Several regions of the
dispersion curves are observed to be quite strongly affected by the
BCs, especially for propagation in X þ 90!. Strong electromechani-
cal coupling can be expected in these regions. The SCM computa-
tion also provides the mechanical and electrical modal field
distributions. Three examples picked at the marks in Fig. 2(b) are
depicted in Fig. 2(c). Thereby, the field was extruded in the propa-
gation direction according to the harmonic ansatz from (3).

V. SAMPLE PREPARATION AND LUS SYSTEM

The samples investigated were double-side polished
SAW-grade 128! Y-cut LiNbO3 wafers with a nominal thickness of
500 μm and an average roughness specified below 1 nm.65 The
shorted BCs were produced by depositing 3 nm titanium and
400 nm gold by physical vapor deposition carried out in a Balzers
PLS 570, metallizing either one or both sides of the wafer.

We use a LUS system to record the spatiotemporal response of
the plate. The LUS setup is sketched in Fig. 3(a). To generate

FIG. 2. Dispersion curves of electroelastic waves propagating in a 128! Y-cut LiNbO3 plate. Three different sets of electrical BCs are compared: shorted–shorted, open–
shorted, and open–open. The SH-like waves are grayed-out. (a) propagation along the X axis, (b) propagation orthogonal to the X axis, and (c) displacement mode
shapes (grid) and electric potential (colormap) for the points marked in (b).

FIG. 3. (a) Investigated 128! Y-cut LiNbO3 sample and sketch of the LUS
system. The orientation of the material coordinate system (X , Y , Z) and the
investigated directions of propagation (X and X þ 90!) are shown.
(b) Workaround for uncoated sample using a UV laser at oblique incidence.
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waves, we use a pulsed laser (Bright Solutions Wedge HB 1064)
with a wavelength of 1064 nm, a pulse duration of about 1.5 ns,
pulse energies of approximately 2 mJ, and a pulse repetition rate set
to 1000 Hz. The laser is focused by a cylindrical lens with 130 mm
focal length and deflected toward the sample by 90! with a dichroic
mirror, which is mounted on an automated translation stage. By
scanning the mirror, the distance between generation and detection
is varied. We deliberately moved the cylindrical lens out of the
focal position by about 3 mm with the intention to couple effi-
ciently into modes of lower k values and to avoid ablation. The
cylindrical lens produces a line shaped thermo-elastic source, pre-
dominantly emitting plane waves with a wave vector perpendicular
to the line.

The out-of-plane component of the resulting surface displace-
ment uz(x, t) is recorded with a two-wave-mixing vibrometer
(Sound & Bright Tempo-FS200) operating at 532 nm wavelength
connected to an oscilloscope (Teledyne LeCroy WaveRunner HRO
66Zi). The detection unit was focused onto the sample through the
dichroic mirror with a lens of 100 mm focal length. A line of
14 mm was sampled along x by scanning the dichroic mirror with
a pitch of 50 μm. To improve the signal-to-noise ratio, 5000 traces
were averaged for each measured position, and the bandwidth of
the oscilloscope was limited to 50MHz.

Figure 4(a) shows the recorded uz(x, t) for the open–shorted
case with propagation in the X-direction. Applying a spatiotempo-
ral Fourier transform results in a representation of the wavefield in

the k-f -domain66 and is shown in Fig. 4(b), where we plot the spec-
tral velocity magnitude jvz(k, f )j ¼ ωjuz(k, f )j.

To enhance the experimental dispersion curves, we apply a
window to the signals in the x-t-domain. The window is designed
to select contributions with energy velocities between 500 and
7000 m/s by cutting out a wedge of the data. To reduce sidelobes,
the window w(x, t) is smoothed by convolution with a Hanning
window in the x and t dimensions. Figure 4(c) shows the windowed
signals uz(x, t)w(x, t) and also indicates the area selected by the
limiting energy velocities as dashed lines. The resulting dispersion
maps with reduced noise and artifacts around k ¼ 0 are shown in
Fig. 4(d). A portion of the dispersion spectrum around 6MHz has
a negative wavenumber but positive energy velocity and is, thus,
detected. Such backward waves45 appear in plates next to
zero-group-velocity points. For simplicity, for Fig. 5, we symmetrize
the measured spectra by vz(k, f )þ vz("k, f ) and only show posi-
tive values for k.

The open–open samples are almost transparent to the
1064 nm generation laser, resulting in insufficient coupling into
guided waves. We followed two separate strategies to obtain mea-
surements in this case: First, we coated the samples with black
paint, which in some attempts provided good results. Here, we
reduced the generation laser energy to avoid ablation (we otherwise
observed thickness resonances as the predominant contributions in
the spectrum). To enhance detection on the black painted sample,
we added a small dot of silver paint, which we focused the vibrom-
eter on. Second, we used a 355 nm laser (Teem photonics
PowerChip UV 355 nm) in order to exploit the significantly higher
absorption of LiNbO3 in the ultraviolet (UV) spectral range. Its
pulse energy was 25 μJ, the pulse length was about 1 ns, and the
repetition rate was set to 250 Hz. The UV laser was guided to the
sample by a flexible periscope with seven mirrors. To scan the laser
along the sample, the periscope’s end-piece together with a
100 mm focal length spherical lens was mounted at a linear scan-
ning stage and pointed at the sample under an angle of *45!. This
way, the primary setup described above could remain, while provid-
ing a workaround for the transparent sample. The workaround is
shown in Fig. 3(b).

With these two strategies, we were able to produce dispersion
maps of sufficient quality for comparison with the SCM. The best
results are shown in Fig. 5 (UV laser in (c), black paint in (f)). We
note that Yang and Tsai46 successfully measured this case using a
532 nm laser and a high pulse energy of 200 mJ.

VI. COMPARISON OF CALCULATED AND MEASURED
DISPERSION CURVES

The experimental and theoretical results are superposed in
Fig. 5. The computations with the SCM are shown as red dots on
top of the spectral magnitude obtained by the LUS experiments.
The insets indicate the direction of propagation and whether the
surfaces are metallized or not. Shear-horizontal waves, which are
included in the SCM result (and shown faintly in Fig. 2), are neither
generated nor detected with the experimental setup and, thus, do
not show. For clarity, these modes have been identified in the SCM
solutions and omitted in the plot. For the calculations shown, we
used measured thickness values of the samples obtained with a

FIG. 4. (a) Recorded surface displacement uz(x, t) for the open–shorted
sample, propagation in the X-direction. (b) Frequency-wavenumber spectrum of
(a). (c) uz(x, t) from (a), with windowing applied. Dashed lines indicate the
selected signal range. (d) Spectrum of (c), showing reduced noise and distur-
bances around k ¼ 0.
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micrometer screw, ranging between 500 μm and 510 μm. For the
coated wafers, we used the overall thickness, including the coating.

Based on Fig. 5, excellent agreement is found between theory
and experiment. Small deviations are found in the highest order
modes for the coated cases. These are well explained by the finite
thickness of the metallization, which is not represented in the SCM
solutions here, but in an additional solution in Appendix C.
Moreover, small experimental deviations from the theoretical direc-
tions of propagation cannot be excluded. We stress that the effect
of different electrical BCs clearly shows in the experiment. For an
assessment of the differences, refer to Fig. 2. The results obtained
on the uncoated plates [Figs. 5(c) and 5(f )] exhibit a lower
signal-to-noise ratio due to the workarounds described in Sec. V,
but the acquired modes match well with the theory.

The configuration with the UV-laser results in an oval spot
on the sample surface, rather than a line source. In this case
[Fig. 5(c)], waves with arbitrary wave vector orientations are gener-
ated. All of them are potentially detected on the scan line, even
when the wave vectors are not collinear to the scanning direction.67

While the main features of the measured dispersion show good
agreement with the calculations at fixed wave vector orientation,
the blurred out regions in the experiment may be due to these wave
skewing effects.

VII. CONCLUSION

We presented the SCM to calculate dispersion curves and
mode shapes for guided electroelastic waves in piezoelectric plates.

FIG. 5. Comparison of the LUS measurements (intensity maps) and the SCM results (points). SH-like modes are omitted from the SCM results for clarity. The BC and
propagation direction are indicated by the inset sketches. (a) shorted–shorted X -direction, (b) open–shorted X -direction, (c) open–open X -direction, (d) shorted–shorted
X þ 90!-direction, (e) open–shorted X þ 90!-direction, and (f ) open–open X þ 90!-direction.
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LUS experiments were conducted to measure dispersion curves on
a LiNbO3 wafer. Comparison of theory and experiment for differ-
ent directions and electrical BCs showed excellent agreement. From
these results, material characterization based on an inverse problem
seems feasible. A need for new characterization techniques is espe-
cially present in the case of deposited thin films and at high fre-
quencies. The properties of thin films often differ from the bulk
material and depend on the growing process and layer thickness.
We consider the possibility to measure a sample under different
electrical BCs particularly promising to disentangle elastic, piezo-
electric, and electric material properties.

In the context of multilayered structures, the SCM could be
used in combination with LUS measurements on different produc-
tion steps of a stacked MEMS device, e.g., on the pure substrate of
a SAW device and then on the deposited stack, including elec-
trodes. Previous work has proven that LUS can indeed be used to
measure guided waves and resonances in the GHz range for mate-
rial characterization purposes.44,68 With the optical spot sizes that
are achievable in practice, effective generation and detection of
guided waves down to 1 μm to 2 μm wavelength is feasible.

As an alternative to SCM, we discussed the SEM in Appendix A.
It is based on the weak form of the waveguide problem and is numeri-
cally superior to SCM but also somewhat more difficult to understand.
An implementation of the SEM is available in GEWtool57 for multi-
layered piezoelectric plates.
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APPENDIX A: SPECTRAL ELEMENT DISCRETIZATION

The spectral element method (SEM) is numerically superior
to SCM because it (i) conserves the hermitian symmetry of the
problem, (ii) preserves the regularity of the operators, and (iii) con-
verges faster. These properties also facilitate the postprocessing,
e.g., computation of group velocities70 and zero-group-velocity
points59 as well as mode-sorting.71 SEM is akin to the finite
element method but uses high-order polynomials defined on the
entire domain as a basis; i.e., no meshing is necessary. In this
section, we sketch the SEM-discretization of the waveguide
problem without providing theoretical details, for which we rather
refer to the literature.56,72

First, the boundary-value problem (10) and (12) needs to be
cast into the corresponding weak form. To this end, we introduce
appropriate test functions ψ(z) corresponding to Ψ(z), i.e., as a
four-component vector function. Multiplying (10) with ψT (z) from
the left, integrating over the domain, and performing a partial inte-
gration of the terms in B and C lead to the weak form of the wave-
guide problem,

ðþh=2

"h=2
ψT (ik)2Aþ ikBT@z þ ω2M

# $
Ψ dz

"
ðþh=2

"h=2
@zψT ikBþ C@z½ )Ψ dz

þ ψT(" ikV)Ψ
# $&&þh=2

"h=2¼ 0: (A1)

Thereby, we have incorporated the Neumann BC from (12) into
the bracketed boundary term.

Second, discretization is performed by approximating

Ψ(z) *
X

j

ΨjPj(z), ψ(z) *
X

i

ψ
i
Pi(z), (A2)

as a weighted superposition of N known polynomials Pj(z) with
j [ {1 . . .N} and four-component vector coefficients Ψj, ψ i

. We
choose Lagrange polynomials Pj(z) defined on the standard Gauß–
Lobatto–Legendre points.72 Accounting for (A2) in (A1), the equa-
tion must hold for arbitrary ψ

i
so that we can write the discrete

system,

(ik)2 A+ PP|fflfflfflffl{zfflfflfflffl}
L2

þik (BT + PD" B+ PDT " V + BB)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L1

2

4

"C + DD|fflfflfflfflfflffl{zfflfflfflfflfflffl}
L0

þω2 M+ PP|fflfflfflfflffl{zfflfflfflfflffl}
M

3

5Ψd ¼ 0, (A3)
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where Ψd ¼ [Ψj], j [ {1 . . .N}, and the N ' N-matrices,

PPij :¼
ðþh=2

"h=2
PiPj dz, (A4a)

PDij :¼
ðþh=2

"h=2
Pi@zPj dz, (A4b)

DDij :¼
ðþh=2

"h=2
@zPi@zPj dz, (A4c)

BBij :¼ PiPj
# $&&þh=2

"h=2: (A4d)

Note that in (A3), we have made use of the Kronecker product
between PP and A (and similar for other terms), defined in block
form as PP+A ¼ [PPij A]. A+ PP is a permutation thereof that
leads to an equally valid linear system. As usual, the matrices (A4)
are computed by numerical integration of the known basis polyno-
mials. Dirichlet BCs, e.g., electrically shorted surfaces, can be
implemented by removing the corresponding degree of freedom, as
was done in Sec. III. The presented SEM procedure is implemented
in GEWtool57 for multilayered plates. A validation and conver-
gence analysis can be found in Appendix B.

APPENDIX B: VERIFICATION

A comparison of phase velocity cp ¼ ω=k dispersion curves
calculated with the SCM (and the SEM from Appendix A) to those
published by Kuznetsova et al.23 is shown in Fig. 6 and shows very

good agreement. The latter authors employ root-finding of the
characteristic equation. Two different crystal cuts of LiNbO3 and
propagation directions are depicted. Material constants are taken
from Ref. 64 and rotated as needed before solving. Note that the
root-searching method that serves as reference missed solutions,
which is an inherent drawback of this method that is resolved by
the semi-analytical methods proposed here.

The convergence of solutions is studied in Fig. 7 for an arbi-
trarily selected mode. The wavenumber is fixed at 20 rad/mm, and
we compute the angular frequency ω of the 12th mode (ordered in
increasing ω). As reference solution ω0, we use a high number of
discretization points of N ¼ 50. The convergence is compared to
that of the classical Finite Element Method (FEM) with first order
Lagrange polynomial basis functions (implemented in this case in
GEWtool using a multilayered plate). While the FEM is known to
converge algebraically, spectral methods converge exponentially as
long as the solution is sufficiently smooth.48,49 Hence, the relative
error jω" ω0j=ω0 is seen to decrease rapidly for the spectral
methods when increasing the discretization N . Particularly impres-
sive is the rapid convergence of the SEM implemented in GEWtool
(Appendix A). For this rather high-order mode, 12 accurate digits
are attained already with N , 26 for the SCM and N , 20 for the
SEM.

APPENDIX C: METAL–PIEZOELECTRIC MULTILAYERS
AND THE INFLUENCE OF THE COATINGS

It is relatively straight forward to extend both the SCM and
the SEM to multilayered plates. For the SCM, the approach
explained in Ref. 52 can be extended to include electrical interface
conditions (continuity of ~f and the normal component of ~D ). For
the SEM, each layer is represented by one element and a

FIG. 6. Verification of the SCM and the SEM with Kuznetsova et al.23 (black lines); (a) Y-cut, propagation in the X-direction and (b) X-cut, propagation in the
Yþ 30!-direction.
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conventional element assembly is performed,72 which is imple-
mented in GEWtool.

In many situations of practical interest, piezoelectric layers are
stacked between metallic and/or dielectric materials. For the latter
two, the piezoelectric stress constants e can be set to zero, and the
effective complex electrical permittivity ϵeff is used for ϵ. The effec-
tive permittivity of metals is mostly imaginary due to their high
electrical conductivity σ and is given by

ϵeff ¼ ϵþ i
σ
ω
: (C1)

A finite imaginary part accounts for losses due to electrical cur-
rents. In this case, the guided waves all have complex-valued wave-
numbers and the computation needs to be performed at fixed
frequencies instead of fixed wavenumbers; see Appendix D. To
avoid this complication, we can model an ideal conducting layer
(σ ! 1, no losses). This is achieved by imposing f ¼ 0 over the
entire layer, i.e., removing all corresponding degrees of freedom.
This is equivalent to modeling pure mechanics of the layer. Yet
another approach is to approximate the ideal conducting layer by
fixing σ=ωmax - ϵ.

The latter approach is used in the following to assess the influ-
ence of the gold (Au) coatings. We compare solutions ignoring the
gold layers (500:8 μm LiNbO3 shorted–shorted) to those account-
ing for them (0:4 μm Au–500 μm LiNbO3–0:4 μm Au open–open).
For gold, we use isotropic material properties (C11 ¼ 111GPa,
C44 ¼ 25GPa, ρ ¼ 19 300 kg=m3, ϵ ¼ 6:9ϵ0 and σ ¼ 45:2MS=m).
Gold is an excellent conductor exhibiting σ=(ωmaxϵ)
* 4:7' 109 - 1: Hence, the resulting wavenumbers are almost
real-valued, and these solutions are shown in Fig. 8. The gold layers
tend to decrease the frequency due to the effect of mass loading,1

which is especially visible for the higher-order modes. This explains
the small mismatch observed between LUS and SCM above
20MHz in Fig. 5(d).

APPENDIX D: COMPLEX WAVENUMBER SPECTRUM

A major advantage of semi-analytical methods is the straight-
forward computation of the complex wavenumber spectrum. To
this end, we fix real-valued frequencies in (19) and solve the qua-
dratic eigenvalue problem in ik, which is naturally complex-valued.
An example is implemented in GEW piezo plate,54 and the result
is reproduced in Fig. 9. The companion linearization used to solve
the polynomial eigenvalue problem doubles the problem size. For
this reason, the 400 frequency points in this example compute in
23 s (57 ms per ω-point). A more efficient implementation is

FIG. 7. Convergence of the computed angular frequency ω of the 12th mode at
20 rad/mm (*21.7 MHz) when increasing the number of collocation points or
nodes N.

FIG. 8. SCM solutions for the X þ 90! direction in a 128! Y-cut LiNbO3 wafer,
comparing the shorted–shorted case with electrodes of zero-thickness (blue
lines) to those of 400 nm thick gold (Au, red dots). The total thickness is
500:8 μm in both cases.

FIG. 9. Complex spectrum of guided waves propagating in the X þ 90! direc-
tion of a 128! Y-cut LiNbO3 wafer with electrically open boundary conditions on
both sides.
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provided in GEWtool’s57 computeK-function, which achieves the
result in 4.4 s (11 ms per ω-point). Instead of relying on
MATLAB’s polyeig-function, the companion linearization is
solved with the subspace methods from MATLAB’s eigs-function,
in this case for 30 modes.

APPENDIX E: MATERIAL PARAMETERS

The material parameters used for the LiNbO3 of trigonal 3m
symmetry2,61 are taken from Kovacs et al.64 We reproduce the
values in Voigt-matrix notation below. Elastic stiffness under cons-
tant electric field:

[c] ¼

198:39 54:72 65:13 7:88 0 0
54:72 198:39 65:13 "7:88 0 0
65:13 65:13 227:90 0 0 0
7:88 "7:88 0 59:65 0 0
0 0 0 0 59:65 7:88
0 0 0 0 7:88 71:835

2

6666664

3

7777775
GPa:

Piezoelectric coupling tensor (piezoelectric stresses):

[e] ¼
0 0 0 0 3:69 "2:42

"2:42 2:42 0 3:69 0 0
0:30 0:30 1:77 0 00

2

4

3

5C=m2:

Dielectric permittivity tensor under constant strain:

[ϵ] ¼ ϵ0
45:6 0 0
0 45:6 0
0 0 26:3

2

4

3

5, ϵ0 * 8:854 188 F=m:

Mass density: ρ ¼ 4628 kg=m3.
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