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Extreme wave skewing and dispersion spectra of anisotropic elastic plates
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Guided wave dispersion is commonly assessed by Fourier analysis of the field along a line, resulting in
frequency-wave-number dispersion curves. In anisotropic plates, a point source can generate multiple dispersion
branches pertaining to the same modal surface, which arise due to the angle between the power flux and the
wave vector. We show that this phenomenon is very particular near zero-group-velocity points and occurs in all
directions independent of the degree of anisotropy. Stationary phase points accurately describe measurements on
a monocrystalline silicon plate.
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Anisotropy greatly impacts guided elastodynamic wave
propagation. A complication that arises is the fact that power
flux is not necessarily collinear with the wave vector, a well-
known effect denoted as power flux skewing [1,2]. It has
traditionally been studied for nondispersive bulk and sur-
face waves in crystals [3–8]. In monocrystalline silicon the
maximum skewing angle of bulk waves is 23.7◦ and the one
of surface waves on [001]-cut silicon is 18.1◦. Recently, we
have observed transverse-group-velocity (TGV) waves guided
in a silicon plate [9], whose power flux is orthogonal to the
wave vector, i.e., skewed ±90◦. These are found in the re-
gion close to zero-group-velocity (ZGV) points, i.e., where
the power flux of a mode vanishes [9]. This region naturally
exhibits extreme skewing in that the range of skew angles cov-
ers 360◦. In general, a possible consequence of skewing are
multiple contributions of one mode in the overall wave field
[1,4–7,10]. This usually occurs in specific propagation di-
rections and has been attributed to concave regions of the
wave vector surface. As such, the effect is closely linked to
caustics and phonon focusing [3–5,8]. Multiplicity has been
evidenced as pulses separating in time [7] and also in the form
of “internal diffraction” [4,6].

In this contribution, we show that the nature of mul-
tiplicity is different in the vicinity of ZGV points, where
it occurs in all directions independent of the degree of
anisotropy and does not require a concave wave vector
surface/contour. Guided waves in plates naturally exhibit
ZGV points, and we capture the induced multiplicity by
studying the effect of power flux skewing on one-dimensional
(1D) scans of the wave field, which also explains the in-
fluence of the source shape on the acquired data. Using
the concept of stationary phase points, we explain the
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link between the dispersion surface (frequency vs in-plane
wave vector) and the frequency-wave-number dispersion data
measured on a line. In contrast to previous work, our
analysis is completely done in terms of frequency-wave vector
spectra of plane guided waves. The model is validated against
measurements on a [001]-cut monocrystalline silicon wafer, a
rather weakly anisotropic material with a universal anisotropy
index of AU = 0.24 [11]. Our measurements reveal strongly
pronounced skewing effects, which supports our claim that
the degree of anisotropy plays a minor role. Our work extends
straightforwardly to other domains of linear wave propagation
in anisotropic media. Analogous phenomena are expected in,
e.g., (roton-like) metamaterials [12,13], phononic and pho-
tonic crystals [14–16], and polariton propagation [17,18].

The dispersive nature of guided waves in plates leads to
additional complexity compared to bulk and surface waves
[19,20]. Several works study low-order guided modes in
strongly anisotropic composite plates with AU as high as 15.8
and skew angles generally below 60◦. In this context, Velichko
and Wilcox [21], Chapuis et al. [22], and Karmazin et al.
[23] have successfully described the arbitrary point-to-point
transmission of plate waves, thereby being interested in wave
packet skewing and energy focusing. While these works were
all concerned with the two-dimensional (2D) wave field in
the plane of the plate, Glushkov et al. [24] were interested
in the field along a line and explained it in terms of cylindrical
guided waves. Although incomplete, 1D data are very inter-
esting in practice because the time-consuming spatial 2D scan
is avoided.

The theory of guided wave propagation in anisotropic
plates is recalled briefly; for more details see [9]. The waves
are characterized by their angular frequency ω and wave vec-
tor k = kek (θ ) = kX eX + kY eY ; see Fig. 1(a). The Cartesian
system eX eY eZ is fixed to the plate, while ekeθez is a local
system oriented with the wave vector. Taking the point of view
of the wave, ek is denoted as the axial direction and eθ as the
transverse direction. Only certain combinations of ω and k
can propagate. The dispersion relation ω(k) forms surfaces
over the Cartesian kX -kY plane or, equivalently, in the cylindri-
cal k-θ plane. It is usual to plot cuts across these surfaces for
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FIG. 1. Guided wave propagation in a [001]-cut monocrystalline
silicon wafer. (a) Geometry in top view. Angles are defined with
respect to the [110] crystal axis. θ : wave-vector orientation, ϕ: ob-
servation angle, α: skew angle. (b) Dispersion curves of symmetric
modes for θ = 0◦ and θ = 45◦. The highlighted region of inter-
est encompasses the S1 and S2b modes close to the ZGV points
(red marks).

a chosen orientation θ of the wave vectors. Figure 1(b) shows
the dispersion curves along the [110] and the [010] axes of a
[001]-cut monocrystalline silicon plate with 525 µm thickness
(adjusted to 524.6 µm to better match our measurements).
The material’s stiffness is of cubic anisotropy (Voigt-notated
stiffness C11 = 165.6 GPa,C12 = 63.9 GPa,C44 = 79.5 GPa,
mass density ρ = 2330 kg/m3). The angle θ is commonly
referred to as propagation direction. But for a lossless
waveguide, the propagation of a wave packet is described by
the group velocity vector cg, which might not be oriented at θ .
The group velocity is given by [2,19]

cg = ∇kω = ∂ω

∂k
ek + 1

k

∂ω

∂θ
eθ , (1)

and is proportional to the wave’s power flux. When cg · k < 0,
we speak of a backward wave and this is the case for the S2b
mode.

In isotropic media, the second term in (1) vanishes and the
group velocity is collinear to the wave vector, which justifies
the notion of propagation direction. The situation is different
in anisotropic plates. While k is oriented at angle θ, cg is at
angle ϕ. The difference, α = ϕ − θ , is denoted as steering or
skew angle [2,22,23]. The angle ϕ dictates the observability of
the corresponding wave component. To explain this, assume
a source at the origin of eX eY eZ and a point of interest at
XeX , where eX is the observation direction. Waves with group
velocity cg oriented along eX are denoted as stationary phase
points [22–24] and only these waves contribute to the field at
XeX (disregarding evanescent waves). In fact, expanding the
wave field with this set of propagating modes is equivalent to
a stationary phase approximation of the far field [22].

Our goal is to model and identify waves measured on a
line away from a source. Which waves are observed depends
on the source in two ways: (i) the wave-vector spectrum that it
excites, and (ii) its aperture, which defines a range of observa-
tion directions for each point on the scan line. To understand
the differences between the extreme cases of a point source
and a line source, we sketch the excitation of a single mode at
a given frequency in Fig. 2. The line source excites mostly
two wave vectors collinear with the observation direction.
Although the skewed power flux inclines the radiated beam,

FIG. 2. Line source vs point source on an anisotropic plate.
(a) The line source excites (mostly) two wave vectors, and the emit-
ted beam is skewed. (b) The point source excites a broad spectrum of
wave vectors, and some of them are observable along the scan line.
(c), (d) Corresponding spectra of the out-of-plane surface displace-
ments measured along the [110] axis of a silicon plate. (e), (f) Same
as (c), (d) but scanned at 22.5◦ out of the [110] axis.

the wave is nonetheless observed on the scan line thanks to the
extend (aperture) of the source. As expected, the measured
wave number will be kX = k · eX = k because ek = eX . This
means that the acquired dispersion data are correctly ex-
plained by the theoretical dispersion curves of Fig. 1(b).
Because of the finite length of the source, the wave can be
measured only within a section of the scanned line, as seen in
Fig. 2(a). Hence, we expect a skew angle-dependent broaden-
ing of the acquired wave-number spectrum.

Measurements are performed with a laser-ultrasonic setup
similar to Ref. [9]. It consists of a pulsed laser source
(10-ns duration, 1064-nm wavelength) and an interferometer
(532-nm wavelength) that measures the surface normal dis-
placements. The source forms either a ≈7 mm-long line or
a small spot on the plate’s surface, with 4.5 mJ and 3 mJ
energy, respectively. Both sources excite wave numbers up to
k ≈ 20 rad/mm. The scan is performed on a 40-mm-long line
away from the source by displacing the interferometer with a
translation stage in steps of 0.1 mm. The temporal acquisition
is 100 µs long. A spatiotemporal Fourier transform with a
20%-tapered cosine window in both dimensions yields the
spectra depicted in Figs. 2(c)–2(f). With a line source, both
the scan along ϕ = 0◦ [Fig. 2(c)] and the one at ϕ = 22.5◦
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FIG. 3. Cuts at 7.742 MHz of (a) the dispersion surface and
(b) the ray surface. The modes observable at 0◦ and 22.5◦ are marked
therein. The wave vector projections (dotted line) onto the corre-
sponding direction (solid line) were measured in Figs. 2(d) and 2(f).

[Fig. 2(e)] show excellent agreement to the dispersion curves
computed for θ = 0◦ and θ = 22.5◦, respectively. Note that
θ = 0◦ is a symmetry axis, and the corresponding skew an-
gles are zero, while this is not the case for θ = 22.5◦. The
mentioned skew-dependent broadening is confirmed when
comparing Fig. 2(e) to Fig. 2(c).

The point source sketched in Fig. 2(b) excites wave vectors
in all possible directions θ . Due to anisotropy, these wave
vectors k exhibit different magnitudes and associated group
velocities cg. Certain specific modes will have cg directed
along the scan line and are hence measured. The experimen-
tally acquired wave numbers are the projection of these wave
vectors onto the observation direction, i.e., kX = k · eX =
k cos α. This explains the discrepancy in Fig. 2(f) with respect
to the superposed dispersion curves computed for θ = 22.5◦,
in particular, close to the minimum in frequency. Most re-
markably, multiple k might propagate energy in the chosen
observation direction, leading to the mentioned multiplicity.
As seen in Figs. 2(d) and 2(f), this manifests in additional
dispersion branches that also pertain to the S1 and S2b modes.

While the sketch in Fig. 2(b) is qualitative, in Fig. 3 we plot
the actual isofrequency contour k(θ ) and ray contour cg(ϕ) at
7.742 MHz. Note that cg is always normal to the isofrequency
contours. For both measurement directions, we marked the
corresponding four stationary phase points, i.e., plane waves
that propagate energy in the observation direction. They ex-
plain the additional contributions in Figs. 2(d) and 2(f). Note
that only two of the solutions are actually observed for the
0◦ scan because two pairs of points exhibit the same kX . The
number of stationary phase points varies with the scan angle.
Figure 3(b) exhibits six of them in a narrow range close to 45◦.
This is due to the small loops in the ray contours that can be
attributed to the concave regions in the dispersion contours.
In the following, we analyze the frequency dependence of
the acquired response while restricting to the case of a point
source. The results are applicable to any source distribution
via Fourier analysis.

The full dispersion surface of the S1 and S2b modes is
depicted in the form of isofrequency contours in Fig. 4(a). The
modes exhibit four ZGV points on θ = 45◦ + n × 90◦, n ∈ Z
(〈100〉 axes) that correspond to minima of the dispersion
surface and are denoted as ZGV1 (marked as e, e′, c and c′)
[9]. Additionally, it exhibits four ZGV points on θ = n × 90◦

(〈110〉 axes) that correspond to saddle points (b, b′, d, d′).
The latter are at a slightly higher frequency and are denoted
as ZGV2. For θ outside symmetry axes, the minimum in the
dispersion curve corresponds to a TGV wave, i.e., its power
flux is orthogonal to the wave vector. The dashed curve in
Fig. 4(a) marks the loci of TGV waves [9].

A point source excites modes on the entire dispersion
surface. The loci of the wave vectors that can be measured
right (left) to the source are marked on the dispersion surface
of Fig. 4(a) as dark (light) green points. As cg is normal
to the isofrequency contours, these stationary phase points
correspond to the locations where the contours are vertical.
The horizontal [110] axis is a reflection symmetry axis that
coincides with the observation direction and all points on
this line are stationary phase points. Additional stationary
phase points are found close to the TGV waves. First, the
isofrequency contours close to a ZGV1 point (minimum)
encircle this point away from the origin. This implies one
off-axis point where cg is oriented along eX and one where
it is along −eX , as is indicated on the highlighted convex
contours. Second, the ZGV2 points (saddle points) induce
regions where the surface is concave (e.g., between b′ and
g). Therefore, the ZGV2 point at 0◦ (180◦) leads to two
symmetric stationary phase points for observation along +eX

(−eX ). The ZGV points and the thickness resonance at k = 0
rad/mm are always stationary phase points, and it is here that
the group velocity cg changes direction.

Projecting the stationary phase points onto the ω-kX plane
and plotting them as conventional frequency-wave-number
dispersion curves leads to the representation in Fig. 4(b). We
observe two curves in “W” shape. While the upper “W” is due
to the points on the horizontal axis of the dispersion surface
of Fig. 4(a), the lower one is due to the points encircling
the center. We remark that only the projection of the latter
onto the observation direction is measured, meaning a priori
that the wave vector magnitude k remains unknown. As the
lower and the upper stationary phase points of the circle in
Fig. 4(a) have the same kX , they merge in the lower “W”
curve of Fig. 4(b). This manifests in coalescence of the eight
stationary phase points marked in Fig. 4(a) into four points in
Fig. 4(b). We remark that the lower “W” has an upper cutoff
frequency marked by a cross. It is given by point g on the
dispersion contours, and above this frequency the contours
become purely convex. In contrast to Fig. 2, we now scanned
across the source with a distance of 40 mm to each side. This
is why we obtain the symmetric spectrum (ϕ = 0◦ and ϕ =
180◦) seen in Fig. 4(c). The theoretical predictions are super-
posed on the measurements and the agreement is remarkably
good.

Next, to measure along a line that is not a symmetry axis,
we rotate the plate by −22.5◦ while keeping the observation
directions ±eX horizontal. The stationary phase points for
the rotated material are marked on the dispersion surface
of Fig. 4(d). They form an “S”-shaped path. Figure 4(e)
shows the corresponding frequency-wave-number dispersion
forming twisted curves with up to eight different wave num-
bers per frequency (or up to three frequencies per wave
number). These points are highlighted for one frequency in
Figs. 4(d) and 4(e). Four of them pertain to the S1 mode
(outside the TGV curve), while the other four are associated
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FIG. 4. Waves observable with a point source and a line scan along eX . The top row (a)–(c) is for a scan along the [110] axis (ϕ = 0◦), while
the bottom row (d)–(f) is for a scan at angle ϕ = 22.5◦. (a), (d) Dispersion surface of the S1/S2b modes as isofrequency contours oriented
such that the observation direction eX is horizontal. The stationary phase points marked therein in dark (light) green are the waves observable
to the right (left) of the source. Observable group velocity vectors are sketched for one selected frequency. (b), (e) Stationary phase points as
frequency ω/2π vs horizontal wave number kX . The highlighted points from (a) and (d) are also marked. (c), (f) Measured spectral magnitude
obtained by scanning across the point source vs the theoretical stationary phase points from (b) and (e).

to the S2b mode (inside the TGV curve). Like previously,
the waves observable to the right (left) correspond to the
branches with positive (negative) slope in Fig. 4(e). The cor-
responding experimental dispersion curves are depicted in
Fig. 4(d) and are seen to coincide again with the theoretical
predictions.

To the best of our knowledge, no algorithm has been de-
vised to directly compute the stationary phase points. As a
work around, we have computed the dispersion surface of
the S1/S2b modes on a dense set of about 2.1 million (k, θ )
points. Subsequently, we selected the solutions where cg is
in the desired direction within 2 mrad (≈0.1◦) tolerance.
The computation was done with our open source software
GEWtool [25] and takes about 1.5 min using eight cores of
an Apple M1 Pro processor.

In conclusion, the frequency-wave-number spectra ob-
tained by scanning a line away from a source on an anisotropic
elastic plate is explained by the stationary phase points on
the dispersion surface. ZGV points entail the unfolding of a

mode into multiple well-resolved contributions in the exper-
imentally acquired line-scan spectra. This was validated by
measurements on a monocrystalline silicon wafer, a rather
weakly anisotropic material. Furthermore, the extreme power
flux skewing induced by the ZGV points implies that wave
vectors spanning 360◦ contribute to the data acquired in a
single arbitrary direction away from a point source. This
phenomenon opens perspectives for the inverse characteri-
zation of complex anisotropic materials with limited data
[26,27], as it inherently contains directional information.
Other applications where we anticipate great benefits include
microelectromechanical sensors and filters [28], nondestruc-
tive testing, and structural health monitoring [10].
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