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Viscoelastic dynamics of a soft strip subject to a
large deformation

Alexandre Delory, *ab Daniel A. Kiefer, a Maxime Lanoy, c Antonin Eddi, b

Claire Prada a and Fabrice Lemoult a

To produce sounds, we adjust the tension of our vocal folds to shape their properties and control the

pitch. This efficient mechanism offers inspiration for designing reconfigurable materials and adaptable

soft robots. However, understanding how flexible structures respond to a significant static strain is not

straightforward. This complexity also limits the precision of medical imaging when applied to tensioned

organs like muscles, tendons, ligaments and blood vessels among others. In this article, we

experimentally and theoretically explore the dynamics of a soft strip subject to a substantial static

extension, up to 180%. Our observations reveal a few intriguing effects, such as the resilience of certain

vibrational modes to a static deformation. These observations are supported by a model based on the

incremental displacement theory. This has promising practical implications for characterizing soft

materials but also for scenarios where external actions can be used to tune properties.

Introduction

Soft solids exhibit the remarkable ability to undergo substantial
deformations. This unique property is harnessed by living
organisms, notably allowing them to achieve locomotion1–3

but also enabling the whole morphogenetic chain to happen,
through the ability of shaping tissues, and leading to the
development of organs and physiological functionalities.4–6

Similarly, plants leverage this trait to adapt to varying environ-
mental conditions.6–8 With recent scientific advances in the
fields of gels and polymers,9–11 engineers have achieved sig-
nificant progress in the manufacturing of versatile, biocompa-
tible and durable soft structures. This has led to the
development of soft robots,12–15 medical devices,16–18 and
inflatable structures,19–21 among others.

The unique mechanical behavior of soft solids arises from
their microstructure. Biological tissues consist of large bio-
molecules, primarily proteins but also nucleic acids, linked
together by covalent bonds (such as peptide and phosphodi-
ester bonds) and non-covalent interactions (including hydro-
gen bonds, van der Waals forces, and ionic interactions). These
networks possess a random nature and offer residual config-
urational freedom at multiple scales. As a result, the elasticity is

governed by entropy,22–24 which usually results in a non-
Hookean response. This effect can be rendered by considering
a Young’s modulus E, which becomes dependent on the defor-
mation; a feature of hyperelastic materials. Furthermore, spatial
rearrangements induce dissipation through viscous effects, lead-
ing to relaxation phenomena. This suggests that the Young’s
modulus is both complex-valued and frequency-dependent.

These characteristics can be illustrated using a model sys-
tem. Here, we consider a simple strip. It is made of a commer-
cially available silicone rubber, the Smooth On Ecoflex 00-30.
Such elastomers consist of an entanglement of macromolecules
connected together through the action of a cross-linking agent.
Therefore, it is relevant to draw an analogy between their
phenomenology and that of biological tissues.

Just like biological tissues, silicone elastomers are expected
to exhibit a hyperelastic behavior.25,26 To verify it, we conducted
a tensile test on an Ecoflex strip. Results, gathered in Fig. 1A,
indicate that for a stretch ratio l (ratio of deformed to original
length) larger than 1.5, the material response deviates from
Hooke’s law. This deviation can be captured using the 2-parameter
incompressible Mooney–Rivlin model27–30 which links the Cauchy
stress s to the stretch ratio l as:

s ¼ E0

3
1� aþ a

l

� �
l2 � 1

l

� �
; (1)

with the Mooney–Rivlin parameters E0 and a. This equation
recovers Hooke’s law s = E0(l� 1) in the limit of small elongations.

This formula effectively depicts the elastic response of an
Ecoflex strip within the investigated elongation range for E0 =
67 kPa and a = 0.15. By assuming Hooke’s law and measuring
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the slope of the curve at small elongations l r 1.3, the value of
E0 = 67 kPa is again recovered. From the Mooney–Rivlin model,
one can derive an effective Young’s modulus (see details in
Appendix A), which amounts to considering the material as
Hookean with the following elongation-dependent Young’s
modulus:

Eðl;o ¼ 0Þ ¼ E0

3
ð1� aÞ 1þ 2

l3

� �
þ 3a

l4

� �
: (2)

Nevertheless, this expression is only valid in the static
regime at a zero angular frequency (o = 0).

Another consequence of the polymer chains’ ability to conform
freely is that they rearrange with a characteristic relaxation time.
As a result, the Young’s modulus is expected to be frequency-
dependent and complex-valued (E = E0 + iE00). By performing
oscillatory rheological measurements using a plate-plate
geometry†, we also investigated the frequency dependence of
our silicone rubber. As shown in Fig. 1B, the material response
appears to be essentially elastic in the range of frequencies tested
with our apparatus (E0 c E00). The loss modulus E00 grows as a
power law of frequency o, which is a signature of a visco-elastic
material. These trends can be modeled using a fractional deriva-
tive Kelvin–Voigt law31–36 (solid lines) which writes:

E(l = 1,o) = E0[1 + (iot)n]. (3)

This model convincingly fits our data (see Fig. 1B) with the
following parameters: E0 = 69 kPa, t = 330 ms, and n = 0.32. Note
that the value of E0 obtained here matches that of the tensile
test (Fig. 1A); slight difference comes from the utilization of
distinct samples for the two measurements. We emphasize that
the above expression is valid in the absence of external defor-
mation (l = 1).

In summary, the dynamic response of our soft polymer
depends on both frequency and strain, which are usually
examined separately. However, drawing conclusions about E
for any couple of parameters (l, o) is not straightforward due to
their interdependence. Until recently,37 there has been no
unified framework to account for both simultaneously. As a
consequence, capturing the dynamics of soft structures under
significant stress, a common occurrence in our daily environ-
ment (vocal folds, tendons, ligaments, muscles and blood
vessels are a few examples of organs operating dynamically
under stress), remains a challenge.

In this article, we propose a model system to explore the
interplay between static prestress and dynamic response of a
soft structure. Specifically, we investigate the behavior of a
rubber strip under significant static deformation. Using image
correlation techniques, we track the propagation of a small
perturbation and make several intriguing discoveries. For
instance, we find that compressional waves exhibit remarkable
resilience to external stretching, while flexural modes display
heightened sensitivity. To support our findings, we derive a
comprehensive model adapted from the principles of acousto-
elasticity.38–46 Finally, we examine the effect of stretching on
Dirac cones, drawing an analogy with condensed matter
physics.47 Here, we find that the cone is relatively immune to
longitudinal stretching, but breaks apart upon transversal
stretching. Overall, our work illustrates how external stress
can be harnessed to tune the dynamics of soft materials,
offering applications for the design of adaptive structures48 or
tunable metamaterials.45,49,50

Low-frequency dynamics
Experimental set-up

To monitor the motion in a strip, we designed the experimental
set-up sketched on Fig. 2A. A strip of initial length L0 = 56 cm,
width b0 = 39 mm and thickness h0 = 3 mm, made of a soft
elastomer (Ecoflex 00-30) is hang up and then stretched by a
factor l in the longitudinal direction e1. Wave generation is
performed by a shaker (TIRAVib 51120) driven in the harmonic
regime. The source is set so that the motion remains in the
(x1, x3) plane. In this configuration, the displacement field is
tracked by a standard video camera facing the strip. For a given
angular frequency o, a digital image correlation (DIC) algo-
rithm and a time-Fourier coefficient derivation are implemen-
ted to extract the complex-valued in-plane components of the
field u1(o, x1, x3) and u3(o, x1, x3). Details and typical movies
can be found in ref. 51 and 52. A singular value decomposition
is then employed to separate contributions from the funda-
mental vibrational eigenmodes. Assuming that the motion is
purely polarized in the (x1, x3) plane, only two modes contribute
at low frequency: a compressional mode mostly polarized in the
e1 direction and a flexural mode mostly polarized in the e3

direction. Displacement profiles obtained at 50 Hz are dis-
played in Fig. 2B and C. They show that the wavelength
(see dashed lines) increases as the stretch ratio l increases

Fig. 1 Mechanical characterization of Ecoflex 00-30—(A) Experimental
tensile test (symbols) and predictions (solid lines) using a linear (Hooke law,
in black) and a nonlinear model (Mooney–Rivlin, in magenta). The elonga-
tion ratio l is measured as the ratio of the deformed total length with
respect to the initial total length. (B) Experimental characterization (sym-
bols) of the complex Young’s modulus together with its fit (solid lines)
based on a fractional Kelvin–Voigt model.

† This apparatus actually probes the shear modulus G from which the Young’s
modulus is extracted as E = 3G for incompressible solids (Poisson’s ratio v E 1/2).
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from 1 (blue frame) to 1.8 (yellow frame). This effect is more
pronounced in the case of the flexural mode.

From these measurements, one can estimate the respective
phase velocities, i.e. the product of wavelength and frequency.
Experimental results are reported as symbols in Fig. 2B and C.
Here, the applied stretch varied from 1 to 1.8 and the driving
frequency from 0 to 100 Hz. The experimental data in Fig. 2 are
compared with numerical ones, based on a procedure that is
described along with our three-dimensional model. These
measurements indicate that the flexural mode is highly affected
by the application of a static longitudinal tension, while the
compressional mode appears nearly immune to it. As a matter
of fact, the latter travels at roughly 10 m s�1, regardless of both
l and o. To clarify these observations, let us examine analytical
expressions for these two velocities.

Compression

In the fields of structural mechanics and biomedical imaging, it
is common to employ the static Young’s modulus E0, to make
inferences about the dynamic behavior of a given structure. For
soft materials, this approach leads to substantial errors. To
illustrate this point, one can go back to the equation governing
compressional dynamics (see for instance equation (25.1) in
ref. 53):

E
@2u1
@x12

� r
@2u1
@t2
¼ 0; (4)

with r standing for the material mass density. Estimating the
phase velocity from the static Young’s modulus E0 and a mass

density r = 1000 kg m�3 leads to a value of V0
c ¼

ffiffiffiffiffiffiffiffiffiffiffi
E0=r

p
¼

8m s�1 (indicated by a red dashed line in Fig. 2B) which
significantly underestimates observations. In addition, this

approach assumes a constant velocity, i.e. non-dispersive pro-
pagation, which is not entirely accurate in this case.

A better estimation can be obtained by considering the
material’s rheology and replacing the Young’s modulus with
that of eqn (3). In the frequency range investigated here, since
one always has ot { 1, the phase velocity writes:

Vc(l = 1,o) = Vc
0[1 + (ot)ncos(np/2)/2]. (5)

Because we take into account the rheology, this amounts to a
frequency dependent phase velocity as experimentally
observed. At 50 Hz, this expression yields a velocity of roughly
10 m s�1, in much better agreement with our measurements.
Also, this velocity slowly grows in power law with frequency.

Our experiments also indicate that Vc is almost independent
of the applied stretch l. To capture this effect accurately, it is
necessary to incorporate the hyperelastic prediction for the
Young’s modulus from eqn (2). However, this alone is not
enough. In fact, wave eqn (4) is written with undeformed
coordinates and a push-forward operation is required to obtain
the correct Young’s modulus. This operation amounts to tran-
sitioning from a Lagrangian (material coordinates) to an Euler-
ian (laboratory coordinates) description. In the present simple
uniaxial configuration, it corresponds54 to replacing the
Young’s modulus by l2E. Overall, the compressional velocity
can be found by replacing the expression of Vc

0 in eqn (5) by:

V0
c ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Eðl;o ¼ 0Þ

r

s
: (6)

For values of l ranging from 1 to 1.8 and for the Mooney–
Rivlin model from eqn (2), this predicts that V0

c undergoes
variations of �2% to +7% maximum. Hence, this expression

Fig. 2 Tracking in-plane waves in a stretched strip—(A) Experimental set-up: a strip of dimensions L0� b0� h0 made of a soft elastomer (Ecoflex 00-30)
is stretched by a factor l in the e1 direction. Elastic waves are generated by a shaker and the strip motion is tracked by a remote camera. By adequate
post-processing, the motion is decomposed into the two vibrational eigenmodes, i.e. compression and flexion. (B) Top: profiles of the displacement at
50 Hz corresponding to a compressional mode for l = 1 (blue frame) and l = 1.8 (yellow frame). The dashed lines indicate the wavelength. Bottom: Phase
velocity of the compressional wave for static elongations varying from l = 1 (blue) to l = 1.8 (yellow). Experimental measures (points) are compared with
theoretical predictions (lines) using our three-dimensional model. (C) Same as B but for the flexural mode.
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effectively captures the small variations observed in the experi-
mental points of Fig. 2B, using simple physical arguments.

Lastly, at l = 1 the velocity starts decreasing for frequencies
higher than 50 Hz, which is not supported by this approach. At
this frequency, the wavelength becomes comparable to the
strip’s width, and the one-dimensional model inevitably fails.

Flexion

Unlike compression, the flexural dynamics displays a remark-
able sensitivity to the application of a static stress. At 10 Hz, our
measurements indicate that the velocity goes from 2 m s�1 at
l = 1 up to 7 m s�1 at l = 1.8. Interestingly, the static stress
triggers a bifurcation in the dispersion behavior. For instance,
as illustrated in Fig. 2C, when l E 1 (dark blue symbols),
the flexural wave is highly dispersive. Its velocity grows from
0 m s�1 in the quasi-static limit to around 5 m s�1 at 100 Hz.
In contrast, for l = 1.8, the velocity becomes nearly independent
of frequency, i.e. the propagation is non-dispersive. This is
characteristic of the transition from a flexural beam regime to a
string-like regime, governed by the tension in the material.

This effect can be captured by getting back to the simple
Euler–Bernoulli model:55

EI

A

@4u3
@x14

� s
@2u3
@x12

þ r
@2u3
@t2
¼ 0; (7)

with A = bh the strip cross-sectional area, I = hb3/12 the second
moment of area‡ and s the uniaxial stress due to the applied
tension force. Assuming a propagative solution with wavenum-
ber k, one obtains the following dispersion relation:

2EI

A
k2 ¼ �s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4EI

A
ro2

r
: (8)

From this expression, it is possible to identify a non-
dimensional parameter g = As2/4rEIo2 which renders the competi-
tion between tension and bending, and evidences the existence of
the two aforementioned regimes. When the strip is not stretched,
s = 0 and g vanishes. The phase velocity of flexural waves writes:

Vf l ¼ 1;oð Þ ¼
ffiffiffiffi
o
p EI

rA

� �1
4
: (9)

The
ffiffiffiffi
o
p

dependence is the signature of a strongly dispersive
regime (depicted by the dark blue line in Fig. 2C). Interestingly,
in this configuration, the group velocity is exactly twice the
phase velocity; enabling possible analogies with non-relativistic
free particle.56 Obviously, this velocity should saturate at some
point; otherwise these waves would become infinitely fast. This
highlights a limitation of the Euler–Bernoulli model, which
becomes invalid at higher frequencies because it assumes that
the displacement should remain purely transverse. Besides,
just like in the previous section, the question arises of which
expression one should consider regarding the Young’s modulus
E. Very similarly, including rheology in eqn (3) yields a more
accurate prediction for velocity.

As the stress s increases with l varying from 1.1 to 1.8, the
non-dimensional parameter g grows from 0.1 to 8, and a change
in the strip behavior is reached. Now, flexion is completely
governed by the tension, and the velocity simply writes:

Vf l;oð Þ ¼
ffiffiffiffiffiffiffiffi
s=r

p
: (10)

This expression captures the almost non-dispersive
dynamics observed in the low-frequency regime, but especially
the increase in velocity with l in the limit o - 0. String
instruments, like guitars or violins, precisely operate in this
regime: the pitch produced by the musician is completely
governed by the fine adjustment of the stress s in the strings.
Some other instruments, like the xylophone or the glocken-
spiel, are designed for the first regime, where the pitch is
typically controlled by the strip lengths rather than tension.

This uni-dimensional model provides an efficient picture of
the strip behavior in the two asymptotic regimes. But for
intermediate values of l the estimation of Vf becomes more
challenging. Besides, the models of flexion and compression do
not take into account the finite size of the strip leading to
inconsistencies when frequency increases, or more precisely,
when the wavelength becomes comparable to the strip width.
Finally, they do not offer the possibility to clearly evidence the
respective roles of rheology and stretching, which happens to
be crucial here. All these considerations substantiate the need
for constructing a comprehensive three-dimensional model.

Three-dimensional model

To build such a model, one has to come back to the constitutive
equations of continuum mechanics.57–60 Assuming a compres-
sible and homogeneous material, the displacement field is
solution of the equation of motion:

Cjikl
@2uk
@xj@xl

¼ r
@2ui
@t2

; (11)

where the Einstein notation is used (sum over repeated indices
j,k,l), u(x,t) is the local displacement vector with its 3 components
ui, and Cjikl are the fourth-order elasticity tensor components.61,62

The effect of prestress is implemented thanks to the acousto-
elastic theory.40,43 It applies in the context of incremental dis-
placements, i.e. small dynamic perturbations on top of a large
static deformation. As explained in a recent contribution,37 this
consists in replacing the stiffness tensor of the undeformed
isotropic elastic material assuming the applied prestress is homo-
geneous and in the time-harmonic case, by a frequency and strain
dependent elasticity tensor Co whose components write:

Co
jiklðl;oÞ ¼ C0

jiklðlÞ þ
E0

3
Ijikl 1þ b0

li2 þ lj2 � 2

2

� �
iotð Þn; (12)

with Ijikl = (djkdil + djldik), and li,lj the stretch ratios in directions ei

and ej. Two distinct contributions show up here. The first one, C0
jikl

(l), are the components of a static tensor modified in order to take
into account the effect of the static stretch according to the
hyperelastic Mooney–Rivlin formalism (see Appendix B for details).
The second term incorporates the effects of viscoelasticity,63,64 thus‡ Note that this moment corresponds to the bending in the (x1, x3) plane.
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integrating the impact of frequency. It features a dependence on
both the stretches l and the frequency o, and underlines the
interdependence between these two variables. In fact, only if the
second coefficient b0 vanishes, the elasticity tensor Cx given by
eqn (12) is the sum of a function of l and of a function of o.
Instead, for our elastomer, a value of b0 = 0.29 was determined in a
previous work.37

In this study, we are interested in displacements in a strip,
meaning that boundary conditions need to be incorporated.
Here, strip edges are free to move, thus the shear stress must
vanish. After integrating these boundary conditions together
with injecting a propagating solution for the displacement,
non-zero solutions are find as zeros of a determinant. This
yields to a dispersion relation that takes the form of a trans-
cendental equation which can only be solved numerically.
Instead, here we employ a semi-analytical algorithm based on
the spectral collocation method65–70 (SCM). The implementation
of ref. 71 dedicated to plates is adapted in order to consider the
strip two-dimensional cross-section and is available in ref. 72.
Assuming a periodic solution propagating along x1 with wave-
number k, that is u(k,x2,x3,o)ei(kx1�ot), yields the following dis-
persion relation (see details in Appendix C):

[(ik)2L2 + ikL1 + L0 + o2M]u = 0. (13)

Therein, Li and M are matrices of the discrete problem.
The above represents an algebraic eigenvalue problem for the
eigenpair (o2,u) parameterized by k, as is common in commer-
cial software. Alternatively, it can be solved for the eigenpair
(k,u) that is parameterized in o, which is particularly useful
for frequency-dependent material parameters. Choosing differ-
ent values for o and solving the quadratic eigenvalue problem
with conventional methods yields the sought dispersion
curves k(o). Note that due to viscoelasticity, wavenumbers k
are complex valued, while o remains a real quantity. This is

handled naturally by the eigenvalue solver and represents no
difficulty.

The first two eigenvalues provide theoretical phase velocities
o/Re(k) depicted as lines in Fig. 2B and C. The theoretical
trends effectively coincide with all our measurements, without
any fitting procedure (all the parameters correspond to ref. 37
devoted to an Ecoflex plate), within the investigated extension
and frequency ranges. For frequencies below 40 Hz, the wave-
length of the compression mode approaches the dimensions of
the strip. Consequently, the systematic extraction of the phase
velocity becomes more sensitive to noise, leading to observable
deviations of certain experimental points from the theoretical
predictions. The decomposition of incremental displacements,
together with three-dimensional equations turn out to be the
key to a proper description of strip dynamics. Note that our
approach can be readily extended to a wide range of structures
with different material rheology or elasticity laws.

Cut-off modes
Free strip

In the previous section, we observed that the strip operates as a
finite waveguide. As a consequence, it has the capacity to host an
infinite amount of eigenmodes. Up to this point, we have
essentially discussed the behavior of two fundamental in-plane
modes: compression and flexion. These two adequately account
for the physics within the low-frequency range. However, above
certain cut-off frequencies, other contributions are likely to
emerge. In other words, the displacement response must be
projected onto a basis with additional eigenmodes. For instance,
at 200 Hz, the field consists in the superposition of five eigen-
modes (Fig. 3), which we separated thanks to a singular value
decomposition.52 Here, modes are labelled according to a con-
vention inspired by Lamb waves.52,73 Specifically, the label S0n

Fig. 3 Field Decomposition at f = 200 Hz—experimental in-plane total displacement field and eigenmode decomposition performed with a singular
value decomposition algorithm. We display the fields with arrows, and the indicated displacement component with a colormap. Note that modes A00 and

S00 correspond, respectively, to flexion and compression at lower frequencies, but both seem as transversely polarized waves at this frequency.
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(resp. A0n) indicates a displacement field that is symmetric (resp.
antisymmetric) along strip width (i.e. across the dotted line in
Fig. 3). The index n refers to the mode order, which is equivalent
to the number of nodes in the transverse direction e3. These
modes have been documented in prior studies,51,52 but their
response to an external static stress remains unexplored. Note
that the two fundamental modes (n = 0) correspond at low
frequencies to the compression (S00) and flexion (A00) described
previously.

Thanks to our setup, which provides reliable data up to 250 Hz,
and empowered by our semi-analytical model, we can now
comprehensively investigate the influence of an external stretch
on the behavior of all modes, rather than restricting our analysis
to just the two low-frequency modes. All experimental and numer-
ical results are compiled in the dispersion diagram in Fig. 4,
which showcases the experimental points (top row) and the
corresponding numerical outcomes (bottom row). These were
acquired from the same soft strip subjected to varying amounts
of longitudinal static stretch, ranging from l = 1 (depicted in blue)
to l = 1.8 (depicted in yellow), and encompassing frequencies up
to 250 Hz. For enhanced clarity, symmetric and antisymmetric
modes are presented in separate diagrams.

As one can notice, the theory effectively captures our experi-
mental observations. As anticipated, only two modes exist at
low frequencies (A00 being the flexural wave, and S00 the com-

pressional wave). A third one (A01) emerges above 75 Hz,

followed by two additional modes (S01 and S02) appearing roughly

at 150 Hz. Of particular interest is the uneven impact of long-
itudinal stretching on these branches. As emphasized in an
earlier section, S00 (compression) seems nearly immune to it at
low frequencies, a characteristic shared by A01. Conversely, the
other modes exhibit greater sensitivity to stretching, notably in
their slopes (i.e. group velocity) but also, in the case of S01 and
S02, in their cut-off frequencies.

A striking result is the change in the behavior of S00 with
stretching when increasing frequency. Note how the branches
spread out above 100 Hz. This feature provides a valuable hint
towards understanding the governing mechanism. Indeed, at
low frequencies S00 is essentially polarized in the longitudinal
direction, as depicted in Fig. 2B, which is why it is commonly
called the compressional mode. However, its dominant polar-
ization switches as the frequency increases. On the displace-
ment map acquired at 200 Hz (see Fig. 3), S00 indeed appears
essentially polarized in the transverse direction.

This strongly suggests that polarization is a determining
criterion. This conclusion is further supported by the fact
that, on one hand, both A00 and S02 are essentially polarized
in the transverse direction (as depicted in Fig. 3) and turn out
to be significantly influenced by the degree of stretching.
On the other hand, A01 is characterized by a longitudinal
polarization (as seen in Fig. 3) and proves resilient to stretch-
ing. See more details in Appendix D, where the dispersion
curves in Fig. 4 are displayed with a colormap rendering their
polarization.

Fig. 4 Dispersion in a soft strip subjected to a uniaxial elongation—the deformation gradient F and the geometry are recalled for a free strip subjected to
a uniaxial tension. Experimental dispersion curves of antisymmetric and symmetric modes in the elongated strip for several values of the stretch ratio 1 r
l r 1.8 are shown in the top line. The theoretical predictions (bottom line) are obtained using SCM (see text).
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Finally, let us take a closer look at the S01 and S02 branches.
See how their two cut-off frequencies coincide, resulting in the
emergence of a crossing at k = 0. This degeneracy goes together
with a linear dispersion for both the S01 and S02 branches. These
features are signatures of a so-called Dirac cone. This kind of
crossing, first evidenced in the context of electrons traveling in
graphene74 holds significant implications in diverse fields like
semiconductor physics,47 wave propagation control,75 and com-
munication systems.76 In the context of soft matter, this
singularity was recently evidenced51 and pertains to incompres-
sible materials (n = 1/2) for the strip geometry.73 Here, we show
that the Dirac cone is relatively robust to extensional stress. Our
measurements also demonstrate that the frequency of occur-
rence can be controlled by adjusting the amount of static
stretch, which can be relevant when considering technological
developments.

To understand these two effects, it is essential to go back to
the expressions of the cut-off frequencies. As shown in a recent
contribution building a plate-strip equivalence,73 one can
demonstrate that the cut-off is governed by a coupling between

the two following modes: a shear wave propagating at VT ¼ffiffiffiffiffiffiffiffiffiffiffi
E=3r

p
and a plate wave propagating at Vp = 2VT. Their cut-off

frequencies are multiples of VT/2b and Vp/2b§. Of course, the
directions associated with theses velocities should be specified
since the material becomes anisotropic upon stretching.37

Here, the relevant transverse wave responsible for the cut-off
frequency propagates in the e3 direction and is polarized in e1

direction. Its phase velocity writes37,39 VT31 = o/Re[kT31] with
kT31/o = [Co

3113/r]�1/2. Conversely, the plate wave involved for the
cut-off frequency propagates again in e3 direction but is also
polarized in e3 direction. Since it has also a displacement in e2

direction, its velocity is actually completely governed by moduli
implying these two directions. It can be expressed37,39 with kp32/
o = [(Co

3223 + 3Co
2332)/r]�1/2. For the Dirac cone to exist, the first

(Vp32/2b) and second (VT31/b) non-zero cut-off frequencies
should coincide. Fig. 5 reports the evolution of the ratio
between these two quantities as a function of the stretch ratio
l (solid line). For this kind of deformation, it appears that the
ratio remains relatively close to 1 (starting from exactly 1 at l = 1
and plateauing at 1.08 for l = 1.8), which explains why the cone
seems present regardless of the applied tension. This relative
robustness can also be harnessed when looking at the polariza-
tion of the field near the Dirac cone (Fig. 8 in Appendix D): as a
consequence of the degeneracy between two modes with ortho-
gonal polarizations the dispersion curve near this point exhi-
bits the presence of the two polarizations. Nevertheless, one
has to keep in mind that in solid state physics a Dirac cone is a
true degeneracy,47,74 unlike here the two branches do not really

cross in the complex wavenumber domain since they are
associated to different imaginary parts¶.

Clamped strip

We now consider an alternative configuration which also sup-
ports the existence of a Dirac cone,51 wherein a soft strip is
clamped at its lateral edges. By adjusting the distance between
the clamps, we are able to induce a transverse stretch (as
illustrated in the inset of Fig. 5 and in Fig. 6). This new
deformation prompts alterations in both the elasticity tensor
and the governing velocities, such as VT31 and Vp32. In this
configuration, which corresponds to a planar elongation, we
obtain that the first and second non-zero cut-off frequencies are
gradually moving away as the stretching increases (as pictured
by the dashed line in Fig. 5). As a result, we anticipate a clear
disruption of the Dirac cone. This can be verified thanks to the
dispersion curves presented in Fig. 6. Once again, theory
effectively matches experimental data.

It is worth pointing out that, in this case, the cone pertains to
antisymmetric modes. The linear crossing, which is its signature,
occurs in the initial state (blue symbols), but splits in two separate
branches as l is increased (yellow symbols). This time, cut-off
frequencies no longer coincide, and instead we see two branches
that plunge completely into the complex plane. This trend is
apparent in the experimental curve and becomes more evident in
theoretical plots. This is particularly visible in Fig. 8 in Appendix D
where the mixed polarization (orange) for the unstretched case

Fig. 5 Cut-off frequencies—evolution of the ratio of phase velocities
Vp32/2VT31 with the applied deformation in the case of an elongational
stretch (solid line) and of a transversal stretch (dashed line).

§ These are obtained by considering the cut-off frequency of the Lamb modes in a
plate (i.e. nVT/2h and mVL/2h) and replacing (i) the velocity of longitudinal waves
VL by the velocity of the plate wave Vp as well as (ii) the thickness of the plate h by
the width of the strip b. The equivalence has been shown to be accurate provided
that the strip is sufficiently thin (b c h) and for frequencies below the first
thickness cut-off frequency (VT/2h, which is here of B1 kHz).

¶ By also studying the wavenumber imaginary part, and not only its real part, it is
more like two straight lines that approach but avoid each other by passing
through the wavenumber complex plane, and not just the real wavenumber axis,
which is rendered by the transparency in Fig. 4. When the cut-off frequencies are
close but not exactly the same, the two linear branches avoid each other more,
still without crossing, and it looks as if the Dirac cone still exists. This increase in
the imaginary part of the wavenumber with the stretch ratio around the Dirac
cone makes it even harder to measure it experimentally.
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gives rise to two different branches with clear orthogonal polar-
izations (yellow and red) for stretched cases. In addition, one
might notice the absence of the two fundamental modes in this
configuration. This is directly linked to the clamping process,
which suppresses rigid body motions.

This configuration provides a demonstration that the three-
dimensional model can readily be extended to various sets of
boundary conditions and to different kinds of static deforma-
tions. Also, this illustrates how applying an external static
stretch serves as a mean to tailor dispersion, and consequently,
tune the overall strip dynamics. It provides a compelling
illustration of the possibility to control the structure response
with an adequate static deformation. This paves the way
towards the design of soft tunable structures.

Conclusion

This article investigates in-plane dynamics of a soft strip
experiencing a significant static deformation in the longitudi-
nal or transverse directions. To that end, our approach consists
in monitoring the propagation of elastic waves within the strip.
Our experiments, supported by a semi-analytical model, reveal
that static stretching strongly impacts the dynamics of the
strip. Interestingly, we observe that certain vibrational modes
seem nearly immune to the external stretching, while others
display a high sensitivity. We find that this sensitivity is
essentially governed by the displacement’s polarization.

These findings are well explained by incorporating both the
rheology and hyperelastic constitutive law of the material,
giving a total of 5 parameters. We first exemplified this by

modelling the effect of stretching on the compression and
flexion of the strips with simple one dimensional models.
Then, to render the whole waveguiding phenomenon occurring
at higher frequencies, we called on a generalized three-
dimensional formalism. Within the framework of incremental
displacement theory, which involves a small dynamic perturba-
tion superimposed on a significant static deformation, we
managed to derive the full dynamic response.

In biological tissues and organic matter, flexible structures
under tension play a pivotal role in various physiological
processes. Our research represents a step towards a better
understanding of the mechanics of vocal folds, tendons and
muscles among others. Furthermore, we demonstrate that
observing wave propagation through a simple strip provides
concrete insights into rheological properties and stress state of
the material. These findings set the stage for refining ultra-
sound elastography techniques,77,78 which currently lack quan-
titative capabilities for imaging stretched organs.

Conversely, because we can make trustworthy predictions, the
external deformation is no longer an obstacle. Instead, it becomes
a valuable tool for shaping the response and fine-tuning overall
structure dynamics. These results unlock interesting perspectives
in terms of design of adaptive soft structures, with potential
applications in the fields of vibration mitigation, energy harvest-
ing and soft robotics.
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predictions (bottom line) are obtained using SCM (see text).

Paper Soft Matter



This journal is © The Royal Society of Chemistry 2024 Soft Matter

curation, formal analysis, investigation, methodology, software,
visualization, writing. ML: conceptualization, formal analysis,
investigation, methodology, visualization, writing. AE: concep-
tualization, formal analysis, investigation, writing CP: concep-
tualization, formal analysis, funding acquisition, writing FL:
conceptualization, data curation, formal analysis, funding
acquisition, investigation, methodology, software, visualiza-
tion, writing.

Conflicts of interest

There are no conflicts to declare.

Appendices

Appendix A: derivation of the Mooney–
Rivlin equivalent Young’s modulus

In the realm of continuum mechanics, the Mooney–Rivlin
constitutive law27–30,79 serves as a hyperelastic model to
account for the deviation from Hooke’s law for large deforma-
tions. It is defined by its strain energy density function W. This
function is constructed as a linear combination of the first two
invariants I1 and I2 of the left Cauchy-Green deformation tensor
(B), defined in Appendix B. For an incompressible Mooney-
Rivlin material, the strain energy density function takes on the
following expression:

W = C1(I1 � 3) + C2(I2 � 3). (14)

This model requires 2 constants to describe the mechanical
properties. As Hooke’s law already provides a scalar quantity,
namely the Young’s modulus E0, we prefer to rewrite this energy
function as:

W ¼ E0

6
ð1� aÞðI1 � 3Þ þ aðI2 � 3Þ½ �: (15)

Note that a = 0 (or equivalently C2 = 0) corresponds to a neo-
Hookean solid30,40,79 which only accounts for geometrical non-
linearities.

In the specific scenario of a uniaxial elongation along
direction e1, we can define a stretch ratio l1 = l. For an
incompressible material, stretch ratios in other directions e2

and e3 simply write l2 ¼ l3 ¼ 1=
ffiffiffi
l
p

since volume has to be
conserved. Then, it becomes possible to calculate the true
stress (Cauchy stress) as eqn (1) in the main text. This is done
by evaluating the following equation which arises from the
condition of vanishing lateral tractions:

s ¼ l1
@W

@l1
� l3

@W

@l3
:

This expression clearly evidences that the true stress does
not linearly grow with elongation. Another way to interpret this
formula would be to keep using Hooke’s law, but considering a

Young’s modulus that depends on the elongation. By doing so,
we implicitly consider the undeformed configuration as a
reference. Then, we need to evaluate the engineering (or
nominal) stress which relates internal forces in the deformed
configuration with areas from the reference. For the incom-
pressible material it simply gives:

seng ¼ sl2l3 ¼
s
l
: (16)

Finally, one easily extracts the desired elongation-dependent
Young’s modulus54 of eqn (2) as:

EðlÞ ¼ d

dl
s
l

� �

¼ E0

3
ð1� aÞ 1þ 2

l3

� �
þ 3a

l4

� �
: (17)

Appendix B: Coefficients of the
elasticity tensor C0(k) for incremental
waves in a hyperelastic solid

A compressible version of the Mooney–Rivlin model was actu-
ally used in this work, with a bulk modulus of 1 GPa, as an
input for the Spectral Collocation Method (SCM), described in
Appendix C. Thus, we switch to compressible formulations for
the quantities of interest. Note that this does not change any of
the above conclusions since the effect of compressibility for
this set of parameters is negligible during a tensile test.

The hyperelastic constitutive law relies on the use of a strain
energy density function W which contains all mechanical
properties. The associated Cauchy stress r is given by:

s ¼ 1

J
F � @W

@E
� FTwithE ¼ FT � F� 1

2
and J ¼ det Fð Þ; (18)

where F = 1 + ru is the deformation gradient, u = x � X is the
displacement, 1 is the second-order identity tensor, and E is the
Green Lagrangian strain tensor, as introduced in ref. 40 and 43.
For an isotropic solid, W is a function of principal invariants of
the left (B = F�FT) Cauchy–Green tensor:

I1 = Tr(B) = l1
2 + l2

2 + l3
2

I2 ¼
1

2
Tr Bð Þ2�Tr B2

	 
� �
¼ l22l

2
3 þ l21l

2
3 þ l21l

2
2

I3 = det(B) = l1
2l2

2l3
2 = J2

This ensures invariance of W under a permutation of
(l1, l2, l3). The strain energy density function W for a Mooney–
Rivlin hyperelastic model writes:

W ¼ E0

3
ð1� aÞ I1

J2=3
� 3

� �
þ a

I2

J4=3
� 3

� �� �
þ k

2
J � 1ð Þ2 (19)

with the bulk modulus k c E0. From this, an incremental
approach is built to describe waves in a prestressed body, and
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eqn (12) is obtained but with replacing the elasticity tensor by C0,
with its coefficients expressed as:

C0
iijj ¼

lilj
J

Wij ;

C0
ijij ¼

lilj
J

ljWi � liWj

li2 � lj2
if ðiaj; lialjÞ;

C0
ijij ¼

l2i Wii � liljWij � liWi

2J
if ðiaj; li ¼ ljÞ; (20)

C0
ijji ¼

l2i
J

liWi � ljWj

li2 � lj2
if ðiaj; lialjÞ;

C0
ijji ¼

l2i Wii � liljWij þ liWi

2J
if ðiaj; li ¼ ljÞ;

where Wi ¼
@W

@li
andWij ¼

@2W

@li@lj
.

Here, expressions are slightly different from the ones com-
monly found in the literature40,43 because dot and double-dot
product conventions are different. The elasticity tensors of
these two formulations are related by a simple permutation
of the last two indices.

Appendix C: Computing guided waves
in the strip with SCM

The computational method72 consists of three fundamental
steps: (i) derive the boundary-value problem that describes plane
guided waves, (ii) replace the differential operators by spectral
differentiation matrices to obtain a discrete approximation of the
guided wave problem, and (iii) use standard numerical methods
to solve the resulting algebraic eigenvalue problem.

Step (i) consists of inserting the plane wave ansatz for the
displacements into the equation of motion given in eqn (11).
After re-arranging the terms this yields (in symbolic tensor
notation):

[(ik)2c11 + ik(c21 + c12)q2 + ik(c31 + c13)q3 + c22q2
2

+ (c32 + c23)q3q2 + c33q3
2 + o2r1]�u = 0 on O, (21)

where we have defined the second order tensors cij:= ei�C�ej with
i, jA {1, 2, 3}. A more detailed derivation for a plate can be
found in ref. 70.

Boundary conditions are needed in addition to eqn (21). The
boundary qO splits into one region qON where the strip is free
(homogeneous Neumann boundary condition) and one region
qOD where it is clamped (homogeneous Dirichlet boundary
condition). Writing en for the unit normal to the strip cross-
section, i.e. either e2 or e3, the homogeneous Neumann bound-
ary condition reads:

en�C :ru = [ikcn1 + cn2q2 + cn3q3]�u = 0 on qON. (22)

The clamped boundary condition, on the other hand, simply
reads:

u = 0 on qOD. (23)

The equation of motion, eqn (21), together with the bound-
ary conditions, eqn (22) and (23), constitute the boundary-value
problem that describes guided waves in the strip. Note that
for a given value of o, it constitutes a quadratic differential
eigenvalue problem with eigenvalue k and eigenfunction
u(x2,x3). Prestress and viscoelasticity are considered using the
appropriate elasticity tensor given by Co in eqn (12). Hence,
the stretched strip is processed in the same way as without
prestress, except that the dimensions of the cross-section
(width b and thickness h) are iteratively adapted to the static
pre-deformation currently being considered.

The discretization is performed in step (ii). To this end, the
domain O = [0,h] � [0,b] is discretized as suggested by Weide-
man and Reddy66 using Chebyshev spectral collocation. The
first and second order differentiation matrices D(10) and D(20) of
size N � N along the x2-coordinate are computed using
DMSUITE.66 We proceed similarly for differentiation along the

Fig. 7 Comparison of the SCM with solutions obtained with COMSOL
Multiphysics—numerically computed dispersion curves for in-plane
guided waves in an undeformed soft elastic strip of size h = 3 mm � b =
40 mm. Solutions coincide both for a free strip in (A) and for the partially
clamped strip in (B).
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x3-coordinate, yielding matrices D(01) and D(02) of size P � P.
Next, the differentiation matrices in the (x2,x3)-plane are
obtained as Kronecker products, denoted by ‘‘#’’, between the
former one-dimensional differentiation matrices. Concretely,
this yields the matrices:

D23 = D(01) # D(10), D2 = IP # D(10), D22 = IP # D(20),

D3 = D(01) # IN, D33 = D(02) # IN, Id = IP # IN, (24)

where IQ denotes the identity matrix of size Q � Q.
Next, the partial derivatives in eqn (21) as well as eqn (22) are

replaced by the differentiation matrices given in eqn (24). When
doing so, the multiplication of the differentiation matrices with
the second order constitutive tensors cij needs to be interpreted
again as Kronecker products. This finally yields:

[(ik)2c11 # Id + ik(c21 + c12) # D2 + ik(c31 + c13) # D3

+ c22 # D22 + (c32 + c23) # D23 + c33 # D33 + o2r1 # Id]u = 0
(25)

where u denotes the 3NP � 1 vector of u1, u2, u3 displacements
at the NP collocation points. Hence, eqn (25) represents a linear
system of size 3NP � 3NP.

The discrete boundary conditions are obtained similarly.
The Neumann boundary condition from eqn (22) becomes:

[ikcn1 # Id + cn2 # D2 + cn3 # D3]u = 0, (26)

while the fixed condition from eqn (23) is:

1 # Idu = 0. (27)

Lastly, the boundary conditions need to be incorporated into
eqn (25). This is done by replacing the corresponding rows of
eqn (25) with the ones from eqn (26) or (27), as appropriate.
Denoting the final matrices with the mentioned replacements
as L2, L1, L0 and M, this finally leads to the eqn (13) in the
main text.

In order to test the implementation, we have considered a
purely elastic material without prestress by setting Co = C, and
we present the results for in-plane guided waves in Fig. 7 for the
two types of boundary conditions. For the sake of complete-
ness, results are compared to the ones obtained by finite
element method, with the commercial software COMSOL,
showing a perfect agreement.

While the free strip computes seamlessly, the partially fixed
strip leads to numerical difficulties due to the singularities
present at the corners of the rectangular cross-section. Choos-
ing different boundary conditions at the corners leads to some-
what different behaviors of the solutions. In any case, the
singularities become less important when increasing N, P and
all solutions converge slowly towards the COMSOL Multiphy-
sics reference. We notice, however, that choosing N even (odd)
leads to a good representation of the mostly in-plane (out-of-
plane) polarized waves. As we are only interested in the in-plane
guided waves, we can choose N and P as before and obtain
converged results for these waves. The described problem could
be overcome by utilizing a finite element discretization instead.
As we are able to obtain accurate solutions for the waves of

interest, we have stuck to the very fast Spectral Collocation
Method to perform parametric studies of prestressed viscoelas-
tic strips in this work.

Appendix D: mode polarization and
dependence on the deformation

Dispersion curves of in-plane eigenmodes in stretched strips
are redisplayed in Fig. 8, for various stretch ratios and config-
urations. In the top part, a free strip is subjected to a uniaxial
stress, while in the bottom part, a strip with fixed edges is
subjected to a planar stress. This time, color encodes for the
mode polarization.

In practice, the spectral collocation method is used to solve
eqn (13) at a fixed frequency o to obtain the eigenpair (k,u). By
studying u, one can discriminate in-plane eigenmodes (from
their out-of-plane counterparts) and their corresponding sym-
metry. One can also study their main polarization by evaluating
mean values of |u1|2 and |u3|2 over the cross-section and
compute the inverse tangent of the ratio

Ð
ju1j2=

Ð
ju3j2. Then, it

is possible to see whether the mode is mostly polarized in the e1

direction (longitudinal in red) or in the e3 direction (transverse
in yellow).

The first and most obvious observation is the S00 mode
polarization in a free strip. At low frequency, it appears red
and all curves are superimposed. This is the so-called compres-
sional mode discussed earlier and depends very little on the
applied prestress, consistent with an almost unchanged
Young’s modulus. Nevertheless, when increasing the fre-
quency, the branch gradually becomes orange, then yellow.
This transition demonstrates the effect of the strip’s lateral
dimension on wave propagation and justifies solving the full
3D problem. It indicates the gradual change from a pure
longitudinal polarization to a more mixed polarization. Inter-
estingly, stretching affects the dispersion diagram when the
polarization becomes predominantly transverse to the stretch-
ing direction. In contrast, the A00 mode in a free strip is highly
dependent on the applied stress, especially at low frequency
where curves are purely yellow (flexion). Similar observations
can be made for other modes, in both configurations. The
redder the curves, the closer together they are, so the less effect
the prestress has. Conversely, the more yellow they are, the
more different they are and the greater the impact of prestress.

Finally, the Dirac cone in a free strip (with symmetric modes
S01 and S02) or in a fixed strip (with antisymmetric modes A01 and

A02) appears orange in both configurations when the strip is
undeformed. This is indeed the only case where both polariza-
tion are involved close to the k = 0 axis. In a free strip, this Dirac
cone remains orange and present. Actually, our method allows
to obtain complex valued wavenumbers, and by also plotting
their imaginary parts, one can notice this linear crossing is
rather two straight lines avoiding each other by passing
through the complex plane. By increasing the stretch ratio,
cut-off frequencies almost coincide and the branches just avoid
each other more (meaning that their imaginary part is slightly
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larger), but the Dirac cone still looks present. In a strip with
fixed edges, cut-off frequencies become sufficiently different so
that the cone splits into two parts, one red which barely
changes with the prestress and another one yellow which is
significantly changed. In between, wavenumbers are predomi-
nantly imaginary.
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