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ABSTRACT:
Dispersion curves of elastic waveguides exhibit points where the group velocity vanishes while the wavenumber
remains finite. These are the so-called zero-group-velocity (ZGV) points. As the elastodynamic energy at these
points remains confined close to the source, they are of practical interest for nondestructive testing and quantitative
characterization of structures. These applications rely on the correct prediction of the ZGV points. In this contribu-
tion, we first model the ZGV resonances in anisotropic plates based on the appearance of an additional modal solu-
tion. The resulting governing equation is interpreted as a two-parameter eigenvalue problem. Subsequently, we
present three complementary numerical procedures capable of computing ZGV points in arbitrary nondissipative
elastic waveguides in the conventional sense that their axial power flux vanishes. The first method is globally conver-
gent and guarantees to find all ZGV points but can only be used for small problems. The second procedure is a very
fast, generally-applicable, Newton-type iteration that is locally convergent and requires initial guesses. The third
method combines both kinds of approaches and yields a procedure that is applicable to large problems, does not require
initial guesses and is likely to find all ZGV points. The algorithms are implemented in GEW ZGV computation
(doi: 10.5281/zenodo.7537442). VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0017252

(Received 29 October 2022; revised 20 January 2023; accepted 30 January 2023; published online 24 February 2023)

[Editor: Michel Destrade] Pages: 1386–1398

I. INTRODUCTION

Thin-walled mechanical structures act as elastodynamic
waveguides.1,2 The angular frequency x of a guided wave is
related to the wavenumber k via a dispersion relation xðkÞ.
There exist so-called zero-group-velocity (ZGV) points
ðx#; k#Þ on the dispersion curves where the group velocity
cg ¼ @x=@k vanishes while the wavenumber k# remains
finite.3–5 These are of special practical interest because the
waves do not propagate, and their energy remains close to
the source, leading to long-lasting ringing effects. This ena-
bles the accurate contactless assessment of structural proper-
ties such as the thickness,6–9 elastic material parameters,9–14

bonding state,15,16 properties of a surrounding fluid,17 and
effective mechanical behavior, e.g., of nanoporous silicon.18

The use and design of the above-mentioned applications
usually rely on the theoretical prediction of the ZGV points.
It is common practice to extract this information from the
complete theoretical dispersion curves. However, this can
be a tedious task, in particular, because several digits of pre-
cision are usually required. More importantly, inverse meth-
ods for determining the sought properties rely on the
automatic determination of the ZGV points.9,10,14 For these
reasons, it is desirable to develop general and efficient
numerical methods to compute these points, which is the
aim of the present contribution.

Although it is not common to explicitly compute the
ZGV points, several procedures have already been devised
for this end. The most widespread method is based on the
implicit analytical dispersion relation, which is of the form
Xðx; kÞ ¼ 0, by additionally requiring the analytically
obtained group velocity @x=@k ¼ %@X=@kð@X=@xÞ%1 to
vanish.9,15 Even for the simple case of an isotropic plate,
this leads to relatively cumbersome expressions that require
carefully implemented numerical methods to avoid numeri-
cal instabilities.2 Conventionally, a gradient-based iterative
solution method would be employed to solve this nonlinear
system—which requires one initial guess for every expected
ZGV point. The procedure has been extended to imperfectly
bonded multi-layered isotropic plates.15 However, although
feasible, to the best of our knowledge, it has not been
employed for anisotropic plates, let alone for geometrically
more complicated structures.

Another method to obtain dispersion curves consists in
performing a numerical discretization of the boundary value
problem (BVP) that describes the guided waves and then
solving the resulting eigenvalue problem (EVP). Based on
this strategy, Kausel19 proposed to start at cut-off frequen-
cies (k¼ 0) associated with backward waves20—which have
negative group velocity for k> 0—and then follow the
branch until the ZGV point is reached. To find all solutions,
the method requires that the ZGV points are induced by a
backward wave starting at k¼ 0 and that only one ZGV
point occurs on each branch. These assumptions are nota)Electronic mail: daniel.kiefer@espci.fr
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generally true. Multiple ZGV points on one branch have
been observed in homogeneous but anisotropic plates,21–23

layered structures,24,25 and fluid-filled pipes.26 Moreover,
the mentioned references have also revealed that ZGV
points can lie on forward wave branches emerging at k¼ 0.
We will explain this behavior in Sec. II B.

In this contribution, we present three complementary
computational methods to locate ZGV points in generally
anisotropic and possibly transversely inhomogeneous
waveguides. In principle, the techniques are applicable to
waveguides of generic cross-sections, although the first
procedure is constrained by the problem size. The current
work focuses on homogeneous anisotropic plates. The
methods do not require calculating the full dispersion
curves in advance. The computations are entirely based on
the discretized EVP, as this is generally more robust, very
fast, and comparably simple to implement.27,28 The first
method is a direct and globally convergent method that
does not require initial values at the cost of being computa-
tionally very expensive. This is the first computational
technique capable of guaranteeing to locate all ZGV points
as long as the problem is not too large. The second method
is based on an iterative approach and is very fast but locally
convergent; hence, it requires one initial guess for every
expected ZGV point. The third method first uses a regular-
ized direct approach to obtain close approximations to
ZGV points and then refines the result with our second,
iterative method. This technique can be applied to rather
large problems and is likely to find all ZGV points.
Moreover, it would also be possible to use the first proce-
dure on a coarse discretization to obtain initial values that
are then refined with the second one. In this sense, the tech-
niques complement each other.

In the following, we first discuss the modeling of ZGV
resonances and their properties in Sec. II. This includes a
short discussion of the discretization of the continuous prob-
lem, as this will be the starting point for the upcoming
numerical procedures. The direct solution of the discrete
ZGV problem is presented in Sec. III. In contrast to this,
Sec. IV introduces the mentioned iterative solution proce-
dure. The third and last method is given in Sec. V, which
combines the strength of a globally convergent method with
the speed of the iterative one. Finally, a conclusion is given
in Sec. VI.

II. ZGV RESONANCES IN PLATES

The waveguide is a linearly elastic infinite plate as
depicted in Fig. 1. It is characterized by its thickness h, mass

density q, and 4th order stiffness tensor c, which we assume
homogeneous in the following.

Displacements "u in the plate in the absence of external
loads are governed by29,30

r & c : r"u%q@2
t "u ¼ 0 (1a)

and

ey & c : r"u ¼0 at y ¼ 6h=2; (1b)

which represent the equations of motion and the traction-
free boundary conditions (BC), respectively. Note that the
stress tensor T ¼ c : r"u has already been eliminated
therein. r ¼ ex@x þ ey@y þ ez@z is the Nabla operator,
ei; i 2 fx; y; zg, are the unit-directional vectors and the @i

denote partial differentiation with respect to the indicated
variable. Each “&” symbol denotes a contraction (scalar prod-
uct) between adjacent tensor dimensions. Accordingly, the
“:” symbol implies two consecutive contractions. Note also
that ey is the unit-directional vector normal to the plate’s sur-
face that yields the relevant traction ey & T for the BC. For
details on symbolic tensor notation, refer, e.g., to Ref. 29.

A. Guided waves

We are interested in time-harmonic, plane, guided
waves that cause displacements of the form

"uðx; y; tÞ ¼ uðy; k;xÞeikx%ixt; (2)

where k denotes the wavenumber along the axial coordinate
x, x stands for the angular frequency in time t, and
i ¼

ffiffiffiffiffiffiffi
%1
p

. While the dependence on t and x has been
resolved analytically by the ansatz in Eq. (2), the depen-
dence on the y-coordinate remains to be determined. This is
achieved by requiring Eq. (2) to satisfy Eqs. (1a) and (1b),
i.e.,

ðikÞ2cxxþ ikðcxyþcyxÞ@yþ cyy@
2
y þx2qI

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

&u¼ 0; (3a)

ikcyx þ cyy@y
# $
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

B

&u ¼ 0; (3b)

which uses the 2nd-order tensors cij ¼ ei & c & ej. For exam-
ple, the components of cxy are cxkly with k; l 2 fx; y; zg. For
the sake of completeness, the explicit derivation of the
equations is given in Appendix A. The above boundary
value problem in the coordinate y will be referred to as
the waveguide problem and is considered to depend on the
two parameters x and k. For future reference, we have
identified therein the wave operator W and the boundary
operator B. One possible computer implementation of Eq.
(3) based on the spectral collocation method is given in
Ref. 31.

Solutions of the form in Eq. (2) are denoted as guided
waves and are well studied in the literature.1,2,30 Depending on

FIG. 1. Infinite, elastic, anisotropic plate of thickness h, density q, stiffness
tensor c.
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c, the displacement components ux and uy might decouple from
uz. Waves polarized purely in the former plane are denoted as
Lamb waves, while those in the latter polarization are termed
shear-horizontal (SH) waves. Note that the waveguide problem
formulated in Eq. (3) is equally valid for all of these polariza-
tions when considering the corresponding 3-, 2-, or 1-
component tensors, respectively. For example, Lamb waves—
being polarized in x–y—are obtained by removing the z-compo-
nent of all tensors. In any case, the solutions ðx; kÞ form curves
xðkÞ denoted as dispersion curves. An example for Lamb
waves in an isotropic steel plate (Lam!e parameters32

k ¼ 115:6 GPa; l ¼ 79 GPa, mass density q ¼ 7900 kg=m3)
is shown in Fig. 2(a). Another important physical property of
the waves is their group velocity cg ¼

def
@x=@k, which is

depicted in Fig. 2(b) for the same plate. Physically, cgðxÞ
describes the propagation speed of a pulse whose spectrum is
centered at x.

B. Properties of ZGV resonances

We are interested in the ZGV points ðx#; k#Þ where the
group velocity cg vanishes but k# remains finite. Two such
points appear in Fig. 2 and are marked correspondingly. In
addition, the group velocity usually also vanishes at the cut-
off frequencies, i.e., the thickness resonances where k¼ 0,
except when multiple cut-off frequencies coincide.19 This
means that the points at k¼ 0 are usually local extrema of a
dispersion curve, and so are the ZGV points. Note that the
latter can also be interpreted as local resonances.4,5 Both the
thickness resonances and the ZGV resonances lead to long-

lasting local vibrations that manifest as peaks in the spec-
trum of the particle velocity measured at the excitation
point.

The parity of the number of ZGV points encountered on
a single branch is directly related to whether this branch
emerges at k¼ 0 as a forward or a backward wave. When an
even (odd) number of ZGV points lie on one branch, they
will be located on a forward (backward) wave branch
emerging at k¼ 0 (inspect Fig. 3 as an example). This is due
to the fact that for large wavenumbers (k!1), the group
velocity is positive, i.e., cg ¼ @x=@k > 0. Indeed, for suffi-
ciently small wavelengths 2p=k, the system resembles an
infinite domain without dispersion. In other words, above a
certain value of k, the curves xðkÞ increase monotonically.
Accordingly, the last ZGV point on a branch (counted in
increasing k) always corresponds to a minimum in xðkÞ. All
other ZGV points are alternately a maximum and a
minimum.

At points where the group velocity vanishes, the plate
admits an additional solution. This has been discussed by
Mindlin33 for the case of thickness resonances. His observa-
tion was extended to ZGV points in isotropic and homoge-
neous plates by Tassoulas and Akylas,3 who denoted the
additional solution as exceptional mode. Later, Kausel19

showed the existence of these additional solutions in layered
isotropic plates with various boundary conditions. The
appearance of the exceptional mode implies that these points
are double eigenvalue points, i.e., two solutions with the
same frequency and wavenumber exist. This is in agreement
with the fact that the ZGV points are branching points where

FIG. 2. (Color online) Lamb wave dispersion curves of an isotropic steel plate showing the frequency-dependent (a) wavenumbers k and (b) group velocities
cg. Excerpts from the dashed regions are also displayed for clarification. Only the real spectrum is shown, for which cg is well defined. The ZGV points are
marked.
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two connected real-valued branches for x > x# transition
into two complex-valued branches for x < x# (not shown
in Fig. 2).1

A further property of ZGV points is that these waves do
not propagate energy. For lossless waveguides, the group
velocity is equivalent to the energy velocity, defined as the
ratio of the wave’s power flux vector and its total stored
energy.1,29 Hence, their power flux vanishes. In anisotropic
plates, the group velocity vector cg ¼ @x=@k ex þ cgzez does
not need to be collinear to the wave vector k ¼ kex, i.e., the
component cgz might be non-zero.1,20,29 However, if the
material is invariant to reflection along ez, then cgz needs to
vanish, and cg will be aligned with k, i.e., it is sufficient to
consider the x-component of cg. Note that this is the case
when Lamb and SH polarized waves decouple (see details
in Appendix B), as will be the case for all examples pre-
sented in this contribution. Hence, we find “true ZGV
points” in the sense that the power flux vanishes in all direc-
tions. Note that all our methods still work when the polariza-
tions do not decouple. That is to say, points with vanishing
power flux in direction ex are correctly found.

Although non-essential to our developments, in the fol-
lowing, we also discuss the normalizability of ZGV resonan-
ces for the sake of completeness. As guided waves are
usually normalized to unit power flux, this implies that ZGV
waves are not normalizable in the usual sense. While a
renormalization has successfully been performed for cut-off
frequencies,34 this has not been achieved for the ZGV
points. On the one hand, this property leads to computa-
tional difficulties, e.g., it is not possible to perform a
perturbation-based sensitivity analysis.1,30,35 On the other
hand, it is precisely this property that makes the waves inter-
esting for practical measurements because the wave’s
energy remains close to the source.

C. Modeling ZGV resonances

While the dispersion curves can be obtained by pre-
scribing values either for the frequencies or for the

wavenumbers and then computing the other one, this is not
possible for the ZGV points. The reason is that they are iso-
lated points on the dispersion curves. This means that we
need to determine both their angular frequency x# and their
wavenumber k# simultaneously. To this end, an additional
equation is required that complements Eq. (3).

As such a condition, we demand the appearance of
an exceptional mode, as discussed in the previous sub-
section. Adapting slightly from Ref. 3, this solution has
the form

"uðx; y; tÞ ¼ u0ðy; k;xÞ þ x uðy; k;xÞ
# $

eikx%ixt; (4)

where uðy; k;xÞ must satisfy the waveguide problem and
the dash (0) denotes the derivative with respect to ik.
Although the imaginary unit in the derivative is not
required, it does lead to simpler expressions.

The equations governing exceptional modes are known
for isotropic plates.3 We derive the equations for the aniso-
tropic case by inserting Eq. (4) into Eq. (1). While the
details can be found in Appendix C, the procedure is out-
lined in the following. Rearranging yields

xW & uþW & u0 þW0 & u ¼ 0; (5)

where Wðk;xÞ is the waveguide operator given in Eq. (3a) and

W0ðkÞ ¼ 2ikcxx þ ðcxy þ cyxÞ@y: (6)

As u was required to be a waveguide solution, it sat-
isfies W & u ¼ 0, and we may restate the problem as

PDE :
W 0
W0 W

% &
& u

u0

% &
¼ 0

0

% &
; (7a)

BC :
B 0
B0 B

% &
& u

u0

% &
¼ 0

0

% &
; (7b)

where the boundary condition Eq. (7b) has been obtained in
a similar fashion. Therein, BðkÞ is given in Eq. (3b) and
B0 ¼ cyx.

FIG. 3. (Color online) Antisymmetric Lamb waves in an austenitic steel plate: (a) wavenumbers k, (b) group velocities cg.
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It is important to note that the second equation in the
systems in Eqs. (7a) and (7b) could have been obtained by
differentiating the waveguide problem from Eq. (3) with
respect to ik and setting cg ¼ @x=@k ¼ 0. This demonstrates
that a wave field of the form in Eq. (4) emerges precisely at
the points where the group velocity vanishes.

We seek eigensolutions where Eqs. (3) and (7) are
simultaneously satisfied. The combination of these two
equations may be denoted as the ZGV problem. We interpret
it as a differential two-parameter eigenvalue problem (two-
parameter EVP)36–39 that describes the sought isolated
points on the dispersion curves. Note that although Eq. (3) is
included in Eq. (7), we still require a system of both equa-
tions as Eq. (3) guarantees that u 6¼ 0. In the following, we
introduce a discrete approximation, and subsequently, we
present a numerical method to solve the resulting algebraic
two-parameter EVP.

D. Discretization

In order to actually solve for the ZGV points, we per-
form a numerical discretization of the previously discussed
boundary-value problems. This converts the waveguide
problem [Eq. (3)] into an algebraic EVP in terms of the vec-
tor40 of unknowns u that might be written as

Wðk;xÞu ¼ 0; (8)

where the parameterized n( n-matrix W defines the discrete
waveguide operator and is given by

Wðk;xÞ ¼ ðikÞ2L2 þ ikL1 þ L0 þ x2M; (9)

with real matrices Li, M. Therein, the boundary conditions
are already accounted for by the matrices. Similarly, the dis-
cretization of Eq. (6) leads to

W0ðkÞ ¼ 2ikL2 þ L1: (10)

The matrices W and W0 also define the discrete analogue of
the exceptional mode, Eq. (7), namely,

W 0
W0 W

% &
u
u0

% &
¼ 0

0

% &
; (11)

in terms of the unknown eigenvector ½u>; u0>*>. The bound-
ary conditions are, again, already accounted for by the
matrices.

Various numerical discretization methods can be used
to obtain the above linear systems. Two popular methods are
finite elements27,28,41,42 and spectral collocation.23,30,31,43

The spectral element method, i.e., high-order finite ele-
ments,41,44,45 is used in this contribution as it produces
matrices of small size n( n and leads to L2 and M being
nonsingular. These properties are highly advantageous—in
some cases even necessary—in order to successfully use the
computational methods presented in the following. The
small matrix size is required for the direct solution method

because it blows up the matrices’ dimensions to 4n2 ( 4n2.
A further advantage of the spectral element method is that it
preserves the symmetry of the continuous operators, result-
ing in Hermitian matrices W and iW0 when k is real-valued,
i.e., the matrices Li are alternately symmetric/anti-symmetric
and M is symmetric positive definite. As a consequence,
solving for the eigenpair ðx2; uÞ of a guided wave at a given
real-valued k is a Hermitian problem and the complex conju-
gate and transpose uH is known to be the left eigenvector
corresponding to u, i.e., uHW ¼ 0. This avoids the explicit
computation of the left eigenvectors, which will be exploited
when computing group velocities, and also to design an
extremely fast locally convergent method in Sec. IV.

For future reference, we also discuss how to compute
the group velocity cg. It is well known that it can directly be
computed from the discrete system from Eq. (8).28,42 To this
end, we differentiate the equation with respect to ik and
obtain

2ikL2 þ L1 þ 2xx0M½ *uþWu0 ¼ 0: (12)

Exploiting that uH is the left eigenvector as discussed above,
the unknown u0 can be eliminated by multiplying the expres-
sion from the left by uH. After re-arranging, this yields the
group velocity (x-component) as

cg ¼ ix0 ¼ % uHið2ikL2 þ L1Þu
2x uHMu

: (13)

Accordingly, at ZGV points, the condition

uHiW0u ¼ uHið2ikL2 þ L1Þu ¼ 0 (14)

holds.

III. DIRECT SOLUTION OF THE TWO-PARAMETER
EIGENVALUE PROBLEM

As discussed in Sec. II C, ZGV resonances are modeled
by two coupled EVPs parametrized in x and k that need to
be satisfied simultaneously, namely the guided wave prob-
lem and the exceptional mode problem. The discrete form
of this so-called two-parameter EVP was given in Sec. II D.
Here, we present a direct numerical solution procedure.

Explicitly writing out the exceptional mode Eq. (11) in
terms of the matrices Li, M and grouping according to the
dependence on ik and x2 yields

ðikÞ2 ~L2 þ ik ~L1 þ ~L0 þ x2 ~M
h i

~u ¼ 0; (15)

with 2n( 2n matrices and vectors

~L2 ¼
L2 0

0 L2

" #

; ~L1 ¼
L1 0

2L2 L1

" #

; ~L0 ¼
L0 0

L1 L0

" #

;

~M ¼
M 0

0 M

" #

; ~u ¼
u

u0

" #

:
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At first sight, demanding the appearance of an exceptional
mode by requiring Eq. (15) to be satisfied seems more com-
plicated than the ZGV condition in Eq. (14). However,
while Eq. (14) is nonlinear in u, Eq. (15) is linear in the new
unknown ~u. This advantage is exploited in the following to
design a direct, globally convergent computational method
to locate the ZGV points.

Overall, Eqs. (8) and (15) form the two-parameter EVP
describing ZGV resonances, and we note that it is quadratic in
ik. Following Ref. 46, we introduce k¼ ik; l¼x2; g ¼ðikÞ2
and write Eqs. (8) and (15) as a linear three-parameter EVP
(see also Appendix D)

ðgL2 þ kL1 þ L0 þ lMÞu ¼ 0; (16a)

ðg~L2 þ k~L1 þ ~L0 þ l ~MÞv ¼ 0; (16b)

ðgC2 þ kC1 þ C0Þw ¼ 0; (16c)

where

C2 ¼
1 0
0 0

% &
; C1 ¼

0 %1
%1 0

% &
; C0 ¼

0 0
0 1

% &
:

Note that Eq. (16c) incorporates the relation between k and
g since detðgC2 þ kC1 þ C0Þ ¼ g% k2. We remark that it
would also have been possible to linearize via companion
linearization,47 which would have doubled the problem size.
In contrast to this, the above approach only increases the
problem size by two at the expense of introducing an addi-
tional parameter.

The three-parameter EVP is related to a system of con-
ventional generalized eigenvalue problems (GEPs) that
decouple in the eigenvalues but remain coupled through
their common eigenvector.37 These GEPs are

D1z ¼ kD0z; DMz ¼ lD0z; D2z ¼ gD0z; (17)

where the new eigenvector z is given by the Kronecker prod-
uct z ¼ u+ v+ w and the 4n2 ( 4n2 matrices

D0 ¼
L2 L1 M
~L2

~L1
~M

C2 C1 0

'''''''

'''''''
+

; D1 ¼ ð%1Þ
L2 L0 M
~L2

~L0
~M

C2 C0 0

'''''''

'''''''
+

(18)

are the so-called operator determinants computed using the
Kronecker product.48 D2;DM are defined in a similar way
but are not needed in the following. The three-parameter
EVP from Eq. (16) is singular which means that all GEPs in
Eq. (17) are singular, i.e., detðD1 % kD0Þ , 0, but the prob-
lem has a finite number of eigenvalues.

In Theorem E.1, we show that if ðx#; k#Þ is a ZGV
point, then k# ¼ ik# is an eigenvalue of the first GEP in Eq.
(17). We can thus compute the wavenumbers k# at the ZGV
points by solving the GEP D1z ¼ kD0z for k ¼ %ik. These
values are subsequently substituted into Eq. (8) to retrieve a
set of corresponding angular frequencies x, which, in

addition, require satisfying Eq. (14) for the solution to repre-
sent a ZGV point. To find the finite eigenvalues of the singu-
lar GEP, we apply the rank projection algorithm described
in Ref. 49 and implemented in MultiParEig.50 In addi-
tion to ZGV points, the three-parameter EVP has additional
eigenvalues. To extract ZGV points, we select solutions
where k ¼ ik is strictly imaginary, l ¼ x2 is real, and Eq.
(14) holds. The algorithm is the following:

ALGORITHM 1: direct method for ZGV points.

Input: n( n matrices L2; L1; L0;M

Output: ZGV points ðx#; k#Þ

1: build matrices D0 and D1 in Eq. (18)

2: solve the singular GEP D1z ¼ kD0z

3: For each imaginary ikj ¼ kj; j ¼ 1;…; r

4: solve ½ðikjÞ2L2 þ ðikjÞL1 þ L0 þx2M*u ¼ 0

5: for each x‘; ‘ ¼ 1; …; n

6: return ðx‘; kjÞ if (14) holds

To demonstrate the reliability of the developed method,
we compute the ZGV points of antisymmetric Lamb waves
in an austenitic steel plate. The orthotropic stiffness tensor is
given in Appendix F. Figure 3 shows the resulting wave-
number and group velocity dispersion curves. All 18 ZGV
points were obtained and are marked therein. The used
matrices Li;M were of size 39( 39 (as will be for all other
computations involving this example), leading to matrices
Di of size 6084( 6084. The computational time was 381 s
(Intel Core i9, Intel, Santa Clara, CA, 16 GB RAM, as for
all upcoming numerical experiments). Note that the method
is able to reliably locate all ZGV points, including double
and triple ZGV points on a single branch. It is remarkable
that no initial values are required in doing so. This is a
strong advantage over other computational techniques.

Nonetheless, its high computational cost is an important
drawback of the presented direct method. While the original
waveguide problem is of size n( n, the ZGV calculation
requires to additionally solve a singular GEP of size
4n2 ( 4n2. This becomes unfeasible very quickly as all cur-
rent numerical solvers for singular GEPs are direct methods
in the sense that they compute all eigenvalues of a GEP at
once. As a result, in practice, we can only apply the above
method to single-layered plates. For this reason, we present
in the following a rapidly converging iterative method for-
mulated in a very general way and applicable to large
problems.

IV. FAST LOCALLY CONVERGENT NEWTON-TYPE
ITERATION

A different approach is taken in the following. In terms
of the nþ 2 unknowns

p ¼
u
k
x2

2

4

3

5;
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we can define a ðnþ 2Þ ( ðnþ 2Þ nonlinear system of the
form F(p)¼ 0 that describes the ZGV points. We write out
F(p) using Eqs. (8) and (14), which yields

Wu ¼ k2ð%L2Þ þ kðiL1Þ þ L0 þ x2M
# $

u ¼ 0; (19a)

uHiW0u ¼ uH kð%2L2Þ þ iL1½ *u ¼ 0; (19b)

uHu% 1 ¼ 0: (19c)

This represents a so-called two-dimensional EVP.51 Contrary
to Eq. (16), it consists only of one EVP with an additional sca-
lar nonlinear constraint. The goal is to find a root p# of Eq.
(19) given an initial guess p0. To solve for p#, we cannot apply
the Newton method directly since u is, in general, a complex
vector and Eqs. (19b) and (19c) are not complex differentiable
in u due to the presence of conjugate values.

To overcome the problem of complex differentiability,
we employ a Newton-type iteration from Ref. 51 derived for
a very similar problem. The idea is to use

JðpÞ ¼
W iW0u Mu

2uHiW0 %uH2L2u 0

2uH 0 0

2

64

3

75 (20)

as a natural complex extension of the Jacobian with respect
to p of Eq. (19). This exploits the fact that both W and iW0

are Hermitian. As proposed in Ref. 51, we obtain the update
Dpj for pjþ1 ¼ pj þ Dpj as

Dpj ¼ % JðpjÞ%1FðpjÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
qj

þibj JðpjÞ%1enþ1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
sj

; (21)

where enþ1 is the canonical unit vector, i.e., enþ1 is an
ðnþ 2Þ-dimensional vector whose ðnþ 1Þth component equals
1, and all other components are equal to 0. Furthermore, we
take bj ¼ Imðqj;nþ1Þ=Reðsj;nþ1Þ. The correction bj ensures that
kjþ1 remains real (we assume that kj and x2

j are real).
If we do not have an initial approximation for u, usually

a good choice is to take the right singular vector correspond-
ing to the smallest singular value of Wðk0;x0Þ. We observe
that in practice, this choice of u0 leads to almost zero bj.
While in this case, the b-correction is not necessary, it is
important for the convergence of the algorithm with other
choices of u0.

One way to find all ZGV points of Fig. 3 using the
Newton-type method is to explicitly compute the group-
velocity dispersion curves cgðxÞ, locate the changes in sign
of cgðxÞ and use the corresponding values of x and k as ini-
tial guesses for our algorithm. This requires computing the
dispersion curves with a sufficiently fine resolution in the
prescribed k-values, such that at least one sample (k-value)
is on each of the backward-wave branches. Otherwise, ZGV
points will be missed. Using 400 wavenumber points and
applying this approach to the austenitic steel plate leads to
Fig. 3 in 0.62 s. The time to compute the required dispersion
curves and group velocity is included therein.

Only if the initial guess is close enough to the desired
ZGV point will the algorithm converge correctly. The regions
of convergence for the anti-symmetric Lamb waves in the aus-
tenitic steel plate are displayed in Fig. 4. Therein, each pixel
defines an initial guess ðx0; k0Þ, while u0 is always taken as
the right singular vector as described above. If the algorithm
converged to any of the predefined ZGV points marked in the
figure, the pixel is classified according to which ZGV point it
converged to. This gives the colored regions of convergence in
the figure, where gray indicates convergence to a cut-off fre-
quency. White pixels correspond to starting values that did not
converge to any of the ZGV points or cut-off frequencies. We
observe large regions of convergence, allowing us to reliably
use the algorithm even with rather poor initial guesses for x
and k. Critical are the situations where multiple ZGV points
are very close or when they are close to the cutoff.

Our choice of the generalized Jacobian given in Eq. (20)
together with the b-correction leads to a significantly faster
algorithm. Instead, in order to avoid the problem of
complex-differentiability, u and uH would usually be treated
as two different unknowns, leading to a considerably larger
parameter vector p and associated Jacobian. To obtain Fig. 4,
which shows the result of 150( 150 initial guesses, our
method performs 190 101 iteration steps in 35.1 s. The corre-
sponding result of the common Newton method looks almost
identical but requires 190 289 iteration steps in 120 s.

An analysis of the convergence behavior with the itera-
tion steps is depicted in Fig. 5. The mean, as well as the
minimum and maximum relative error in frequency for the
100 tested initial guesses, is shown. Numerical accuracy is
achieved after only five iteration steps, underlining the effi-
ciency of the method.

V. METHOD OF FIXED RELATIVE DISTANCE

There are currently no efficient methods for large singu-
lar GEPs, and Algorithm 1 cannot be applied to problems

FIG. 4. (Color online) Regions of convergence: initial guesses x0 ¼ 2pf0

and k0 that are close enough to a ZGV point converge correctly. Each col-
ored pixel indicates convergence of that initial guess towards a correspond-
ing ZGV point (gray pixels to cut-off frequencies).
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with large n. We can apply the Newton-type iteration from
Sec. IV, but this method requires appropriate initial approxi-
mations. In this section, we present a method suitable for
large problems that can compute a small number of ZGV
points ðx#; k#Þ such that k# is close to a given target k0.

As discussed previously, at a ZGV frequency x#, the
waveguide problem in the variables k ¼ ik and l# ¼ x2

#,
i.e.,

k2L2 þ kL1 þ L0 þ l#M
# $

u ¼ 0; (22)

has a multiple (usually double) eigenvalue k# ¼ ik#. Note
that this follows from Eqs. (8) and (15) both holding at the
ZGV point. Therefore, for certain ~l 6¼ l# but close to l#,

k2L2 þ kL1 þ L0 þ ~lM
# $

u ¼ 0 (23)

has two different eigenvalues that are both close to k#. The
method of fixed relative distance (MFRD) can be employed
to find such points.52 Adapted to our problem, it introduces
the three-parameter EVP,

ðgL2 þ kL1 þ L0 þ lMÞu ¼ 0; (24a)

ðgð1þ dÞ2L2 þ kð1þ dÞL1 þ L0 þ lMÞv ¼ 0; (24b)

ðgC2 þ kC1 þ C0Þw ¼ 0; (24c)

in l ¼ x2; k ¼ ik and g ¼ ðikÞ2. Therein, d > 0 specifies
the relative distance between the sought k and serves as a
regularization parameter. Moreover, the matrices C0;C1;C2

are as in Eq. (16c). We conclude that for small d, the three-
parameter EVP in Eq. (24) has an eigenvalue ð~k; ~l; ~k2Þ close
to the ZGV point ðk#; l#; k2

#Þ such that ~k and ~kð1þ dÞ are
eigenvalues of the initial problem in Eq. (23).

Solutions are obtained similarly to Sec. III by perform-
ing a transformation into a system of conventional GEPs.
However, in contrast to Eq. (16), the three-parameter EVP

from Eq. (24) is regular since the corresponding 2n2 ( 2n2

matrix,

~D0 ¼
L2 L1 M

ð1þ dÞ2L2 ð1þ dÞL1 M

C2 C1 0

'''''''

'''''''
+

; (25)

is nonsingular for d > 0. Hence, the first GEP given by

~D1z ¼ k~D0z; (26)

where

~D1 ¼ ð%1Þ
L2 L0 M

ð1þ dÞ2L2 L0 M

C2 C0 0

'''''''

'''''''
+

(27)

is also regular and we can apply standard subspace methods,
for instance eigs in MATLAB, to compute some solutions k
close to a chosen target k0 ¼ ik0. Then, the obtained eigen-
vector z is used in the GEP associated with l, namely,

~DMz ¼ l~D0z; (28)

with ~D0 as before and

~DM ¼ ð%1Þ
L2 L1 L0

ð1þ dÞ2L2 ð1þ dÞL1 L0

C2 C1 C0

'''''''

'''''''
+

;

to obtain l via

l ¼ zH ~DMz

zH ~D0z
: (29)

Since each solution ðk; lÞ is close to a ZGV point, it can be
used as an initial approximation for the Newton-type
method from Sec. IV. The algorithm is as follows:

ALGORITHM 2: MFRD method for ZGV points.

Input: n( n matrices L2; L1; L0;M, target k0

Output: ZGV points ðx#; k#Þ close to k0

1: build matrices ~D0 and ~D1 in Eqs. (25) and (27)

2: Find eigenvalues of ~D1z ¼ k~D0z close to k0 ¼ ik0

3: for each k and eigenvector z

4: compute l ¼ zH ~DMz=zH ~D0z

5: if jReðkÞj and jImðlÞj are both small then

6: apply Newton-type method from Sec. IV

to compute ðk#;x#; u#Þ with initial guess ImðkÞ;ReðlÞ
7: return ðx#; k#Þ if (14) holds

We can apply Algorithm 2 several times using different
targets k0 and thus scan a wavenumber interval ½ka; kb* for
ZGV points ðx#; k#Þ. It is worth remarking that from one

FIG. 5. Decrease of the relative error in frequency with each iteration step
of the Newton-type method for the ZGV point at ðx# ¼ 2p & 11 MHz;
k# ¼ 7:1 rad=mmÞ. The 100 initial guesses are randomly picked from the
uniform distribution with 65% variation around the ZGV point, which cor-
responds to the convergence radius. Other ZGV points behave similarly.
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search to the next, the target k0 can be chosen such that it
becomes highly unlikely to miss any ZGV point. To this end, k0

is chosen close to the largest k# found in the previous search (at
a smaller k0). Alternatively, if n is small enough, we can com-
pute all eigenvalues in step 2, refine the solutions with the
Newton-type method and thus obtain all ZGV points. An advan-
tage of Algorithm 2 over Algorithm 1 is that the GEP from Eq.
(26) is of size 2n2 ( 2n2 instead of 4n2 ( 4n2. However, most
importantly, the problem is regular if the employed numerical
discretization method provides regular matrices.

The regularization parameter d has to be selected care-
fully. If d is too small, then the GEP from Eq. (26) is close
to being singular and the method of choice might fail to find
eigenvalues in step 2. On the other hand, if d is too large,
then initial approximations might be too poor, and the
Newton-type method does not converge.

Applying Algorithm 2 to the same problem as before
using d ¼ 10–6 yields all ZGV points as already depicted in
Fig. 3. For this end, the computation is done at 12 different
targets k0. The total computing time is 18 s.

The relation between the two-parameter EVPs given in
Eqs. (24) and (16) should be discussed. As ZGV points are
double eigenvalues k# ¼ ik# for l# ¼ x2

#, it might seem
appropriate at first sight to set d¼ 0 in Eq. (24) to find these
solutions. The resulting singular EVP could be solved as in
Sec. III. However, this approach is able to find only double
eigenvalues of geometric multiplicity two,53 i.e., crossing
points in the dispersion curves. The geometric multiplicity of
an eigenvalue is the number of linearly independent eigenvec-
tors associated with it. ZGV points are double eigenvalues of
geometric multiplicity one. For this reason, the extended two-
parameter EVP as given in Eq. (16) is required in order to
compute ZGV points with a direct approach.

VI. CONCLUSIONS AND OUTLOOK

ZGV points are double eigenvalue points on the disper-
sion curves that are characterized by the appearance of an
exceptional mode (in contrast to crossing points of disper-
sion curves). We have derived the associated equations for
anisotropic plates. The system of equations governing ZGV
resonances consists of the guided wave problem and the
exceptional mode equation. This represents a singular two-
parameter eigenvalue problem that is difficult to solve.

We have presented three very different but complemen-
tary computational methods to locate ZGV points in the
frequency-wavenumber plane. Their properties are summa-
rized in Table I. While the direct method is globally conver-
gent but slow and applicable only to small problems, the

Newton-type iterative one is very fast but locally conver-
gent. Our third method, which employs the MFRD, com-
bines the direct solution of a regularized problem with the
Newton-type procedure. As a result, this method can be
applied to rather large problems, does not need initial
guesses and is likely to find all ZGV points. We provide the
implementation of the three algorithms together with an
example in GEW ZGV computation.54

While we have applied the concepts to homogeneous
but anisotropic plates only, the methods are quite generally
applicable. Equations of the same structure are obtained
when modeling transversely inhomogeneous waveguides of
arbitrary cross section. Hence, the methods presented here
can be used in the same way to find ZGV points of such
waveguides.

By fixing d¼ 0, the system in Eq. (24) from the MFRD
could alternatively be employed to find the crossing points
in the dispersion curves in a general waveguide setting. The
computational effort to solve the obtained singular three-
parameter eigenvalue problem is slightly lower than our
direct method to compute ZGV points. Note that such cross-
ing points are known to exist only if the parametrized eigen-
value problem is uniformly decomposable.55
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APPENDIX A: DERIVATION OF THE WAVEGUIDE
PROBLEM

Recall the ansatz from Eq. (2) for plane harmonic
guided waves,

"uðx; y; tÞ ¼ uðy; k;xÞeikx%ixt: (A1)

Note that for the above displacements @z"u ¼0 and
@x"u ¼ik"u. Acknowledging this, we write the Nabla operator
as

r ¼ exik þ ey@y: (A2)

First, the proposed motions from Eq. (A1) need to sat-
isfy the equation of motion [Eq. (1a)]. Inserting the above
definitions and dropping the complex exponentials yields

TABLE I. Comparison of the algorithms and their properties. The indicated computational time is for the antisymmetric Lamb waves in the austenitic steel

plate of Fig. 3.

Algorithm Problem size Initial guesses Finds all solutions Speed

Direct method Small No Yes Very slow (381 s)

Newton-type Large Yes Likely (using cgðxÞ) Very fast (0.62 s)

MFRDþNewton-type Medium Target k0 Very likely Fast (18 s)

1394 J. Acoust. Soc. Am. 153 (2), February 2023 Kiefer et al.

https://doi.org/10.1121/10.0017252

https://doi.org/10.1121/10.0017252


ðexik þ ey@yÞ & c : ðexik þ ey@yÞuþ qx2u ¼ 0: (A3)

Note that, per definition, the double contraction consists of
two sequential scalar products of the adjacent tensor dimen-
sions, i.e., c : exu ¼ ðc & exÞ & u. Therewith, it is possible to
factor out u in the above equation. Expanding the products
and rearranging terms leads to

ðikÞ2ex & c & ex þ ikðex & c & ey þ ey & c & exÞ@y

h

þ ey & c & ey@
2
y þ x2qI

i
& u ¼ 0 ; (A4)

where I is the second order unit tensor. With the definition
cij :¼ ei & c & ej, the above is identical to Eq. (3a).

Second, the motions from Eq. (A1) also need to satisfy
the traction-free boundary condition from Eq. (1b). Inserting
and dropping the complex exponential yields

ey & c : ðexik þ ey@yÞu ¼ 0 at y ¼ 6h=2: (A5)

By factoring out u and multiplying the terms, we immedi-
ately obtain the desired result [Eq. (3b)].

APPENDIX B: COLLINEARITY OF POWER FLUX
AND WAVE VECTOR

The relation between the uncoupling of Lamb- and SH-
waves and the collinearity of the power flux and the wave
vector are to be discussed. Note first that the SH-polarized dis-
placement component uz decouples from the Lamb-polarized
motions (ux, uy) when the stiffness tensor components satisfy

czabc ¼ 0 with a; b; c 2 fx; yg; (B1)

for details see Ref. 30. Note that the Greek dummy indices
run only over {x, y}.

The power flux p of the guided waves is obtained from
the particle velocity v ¼ %ixu and the stress T ¼ c : ru.
Using again r ¼ exik þ ey@y, we obtain

p ¼ %v & T ¼ ixu & ikc : exuþ c : ey@yu
# $

: (B2)

The y-component of p is always zero due to the flux-
free BCs of the guided waves. Hence, the power flux vector
p and the wave vector kex are collinear if the z-component
of p vanishes. Due to the symmetry in T (or equivalently in
c), this component is pz ¼ ez & ð%v & TÞ ¼ %v & ðez & TÞ, i.e.,

pz ¼ ixiku & czx & uþ ixu & czy & @yu; (B3)

where czx ¼ ez & c & ex has components czijx with i; j 2 fx; y; zg
and similarly for czy. From the above, we conclude that if pz¼ 0
for arbitrary u, this implies the decoupling of Lamb- and
SH-polarizations, i.e., Eq. (B1) is satisfied.

On the other hand, let us now assume Lamb wave
motions, i.e., Eq. (B1) holds and uz¼ 0. In this case, the
transversal power flux can explicitly be written in terms of
the displacement components as

pLamb
z ¼ ixikczabxuaub þ ixczabyua@yub; (B4)

where summation is implied over the repeated dummy indi-
ces a; b 2 fx; yg. From the decoupling condition in Eq.
(B1), we conclude that pLamb

z ¼ 0. Overall, we can state that
the power flux and the wave vector of Lamb waves are col-
linear if and only if Lamb- and SH-polarizations decouple.

APPENDIX C: DERIVATION OF THE EXCEPTIONAL
MODE EQUATION

The PDE of the exceptional mode equation is obtained
by inserting the ansatz

"uðx; y; tÞ ¼ u0ðy; k;xÞ þ xuðy; k;xÞ
# $

eikx%ixt (C1)

into the equation of motion

ðex@x þ ey@yÞ & c : ðex@x þ ey@yÞ"uðx; y; tÞ

þx2qI & "uðx; y; tÞ ¼ 0; (C2)

where we have rewritten the Nabla operator as

r ¼ ex@x þ ey@y: (C3)

Using the exceptional mode ansatz from Eq. (C1) and
dropping the explicit notation of the dependence on
ðy; k;xÞ, one finds

@x"uðx; y; tÞ ¼ uþ iku0 þ ikxu½ *eikx%ixt; (C4)

@y"uðx; y; tÞ ¼ @yu0 þ x@yu
# $

eikx%ixt: (C5)

Accordingly, the stress tensor c : r"uðx; y; tÞ is given by

c : ex@x"uðx; y; tÞ þ ey@y"uðx; y; tÞ
# $

¼ ðc & exÞ & uþ iku0 þ ikxu½ *eikx%ixt

þðc & eyÞ & @yu0 þ x@yu
# $

eikx%ixt : (C6)

Last, after forming the divergence of the above stress field,
i.e., contracting from the left with ðex@x þ ey@yÞ, we balance
with the inertial term. For conciseness, we introduce the
notation cij ¼ ei & c & ej. Performing the multiplications and
regrouping the terms, one finally obtains the equation of
motion in the following form:

x ðikÞ2cxx þ ikðcxy þ cyxÞ@y þ cyy@
2
y þ x2qI

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

&u

þ ðikÞ2cxx þ ikðcxy þ cyxÞ@y þ cyy@
2
y þ x2qI

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

&u0

þ 2ikcxx þ ðcxy þ cyxÞ@y

# $
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W0

&u ¼ 0 : (C7)

As u is a guided wave solution, W & u ¼ 0. Therewith, the
above equation is precisely the system from Eq. (7a).
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Second, the corresponding BC is also needed. The nor-
mal vector on the plate’s surface is 6ey. The traction free
condition is, hence, ey & c : ruðx; y; tÞ ¼ 0. From Eq. (C6)
we obtain

x ikcyxþ cyy@y
# $
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

B

&uþ ikcyxþ cyy@y
# $
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

B

&u0þ cyx|{z}
B0

&u¼ 0; (C8)

where we have again performed the multiplications and
resorted the terms. Noting that B & u ¼ 0, the above is
exactly the statement from Eq. (7b).

APPENDIX D: MULTIPARAMETER EIGENVALUE
PROBLEM

A k-parameter eigenvalue problem has the form

V10x1 ¼ k1V11x1 þ & & & þ kkV1kx1;

..

.

Vk0xk ¼ k1Vk1xk þ & & & þ kkVkkxk;

(D1)

where Vij is an ni ( ni matrix and xi 6¼ 0 for i ¼ 1;…; k. If
Eq. (D1) is satisfied then a k-tuple ðk1;…; kkÞ is an eigen-
value and x1 + & & & + xk is the corresponding eigenvector.
The problem in Eq. (D1) is related to a system of GEPs,

D1z ¼ k1D0z; …; Dkz ¼ kkD0z; (D2)

where z ¼ x1 + & & & + xk and matrices

D0 ¼

V11 & & & V1k

..

. ..
.

Vk1 & & & Vkk

'''''''

'''''''
+

and

Di ¼

V11 & & & V1;i%1 V10 V1;iþ1 & & & V1k

..

. ..
. ..

. ..
. ..

.

Vk1 & & & Vk;i%1 Vk0 Vk;iþ1 & & & Vkk

''''''''

''''''''
+

for i ¼ 1;…; k are called operator determinants, for details
see, e.g., Ref. 56. If D0 is nonsingular, then Eq. (D1) is regu-
lar and matrices D%1

0 D1;…;D%1
0 Dk commute. A regular k-

parameter EVP from Eq. (D1) has n1 & & & nk eigenvalues.

APPENDIX E: EIGENVALUES OF A SINGULAR GEP

Matrices D1 and D0 from Eq. (18) form a singular GEP,
i.e., detðD1 % kD0Þ , 0. Then k0 2 C is a finite eigenvalue
if rankðD1 % k0D0Þ < nrankðD1;D0Þ, where

nrankðD1;D0Þ ¼ max
n2C

rankðD1 % nD0Þ

is the normal rank of the GEP.
Theorem E.1. If ðik;xÞ is a solution of Eqs. (8) and

(15), then k ¼ ik is an eigenvalue of D1 % kD0.

Proof. We introduce QðkÞ ¼ M%1ðL0 þ kL1 þ k2L2Þ.
Using a block partitioned version of the Kronecker prod-
uct57 we can show that

rankðD1 % kD0Þ ¼ rank
AðkÞ

B

% &( )
;

where

AðkÞ ¼
I + QðkÞ % QðkÞ + I

I + Q0ðkÞ I + QðkÞ % QðkÞ + I

" #

and

B ¼
1 0

0 1

" #
+ ðM%1L2 + I % I +M%1L2Þ:

Clearly, rankðD1 % kD0Þ ¼ rankðAðkÞÞ þ rankðBÞ and k0 is
an eigenvalue of D1 % kD0 when rankðAðk0ÞÞ<nrankðAðkÞÞ.

Let us assume that QðkÞ is not a uniformly decompos-
able matrix flow, i.e., there does not exist a unitary matrix U
such that UHQðkÞU has the same block diagonal structure
with at least two blocks for all k. Then, see, e.g., Ref. 55, for
a generic n all eigenvalues of QðnÞ are distinct. Let
QðnÞxi ¼ rixi, where xi is nonzero, for i ¼ 1;…; n and
r1;…; rn are distinct. Vectors x1;…; xn form a basis for Cn

and vectors xi + xj; i; j ¼ 1;…; n, form a basis for Cn2

. It is
easy to see that

ðI + QðnÞ % QðnÞ + IÞðxi + xjÞ ¼ ðrj % riÞðxi + xjÞ

for i; j ¼ 1;…; n. Thus, rankðI + QðnÞ % QðnÞ + IÞ ¼ n2 % n
and the null space of I + QðnÞ % QðnÞ + I is spanned by vec-
tors xi + xi; i ¼ 1;…; n.

We get

AðnÞ
0

xi + xj

" #

¼
0

ðrj % riÞxi + xj

" #

(E1)

and

AðnÞ
xi + xj

0

" #

¼
ðrj % riÞxi + xj

xi + Q0ðnÞxj

" #

(E2)

for i; j ¼ 1;…; n. For i 6¼ j this gives 2n2 % 2n linearly inde-
pendent vectors from the image of AðnÞ, while vectors
h

0
xi + xi

i
; i ¼ 1;…; n, are clearly in the null space of AðnÞ.

What remains are vectors

AðnÞ
xi + xi

0

" #

¼
0

xi + Q0ðnÞxi

" #

(E3)

for i ¼ 1;…; n. Each vector Q0ðnÞxi can be written as a lin-
ear combination of x1;…; xn, i.e.,

1396 J. Acoust. Soc. Am. 153 (2), February 2023 Kiefer et al.

https://doi.org/10.1121/10.0017252

https://doi.org/10.1121/10.0017252


Q0ðnÞxi ¼
Xn

‘¼1

ai‘x‘;

for i ¼ 1;…; n. For a generic n, aii 6¼ 0 for i ¼ 1;…; n, so
vectors from Eq. (E3) give additional n linearly independent
vectors from the image of AðnÞ and rankðAðnÞÞ ¼ 2n2 % n.

Let ðik;xÞ be a solution of Eqs. (8) and (15) with the
corresponding vectors u and u0. If we take k0 ¼ ik then

ðQðk0Þ þ x2IÞu ¼ 0;

Q0ðk0Þuþ ðQðk0Þ þ x2IÞu0 ¼ 0:

It is easy to check that

Aðk0Þ
u+ u

u+ u0

" #

¼ 0

and we have a vector in the null space that is clearly linearly
independent from vectors that we get from Eq. (E1). It fol-
lows that rankðAðk0ÞÞ < nrankðAðkÞÞ and k0 is an eigen-
value of D1 % kD0.

If QðkÞ is a uniformly decomposable flow, the theorem
is still valid, the only difference is that in the proof we have
to consider individual blocks in the block diagonal form of
QðkÞ. !

APPENDIX F: MATERIAL PARAMETERS

The elastic parameters used in the calculation were
those of orthotropic austenitic steel provided by Lanceleur
et al.:58

• Voigt-notated stiffness in 1011 Pa:

C ¼

2:50 1:80 1:38 0 0 0

1:80 2:50 1:12 0 0 0

1:38 1:12 2:50 0 0 0

0 0 0 0:70 0 0

0 0 0 0 1:17 0

0 0 0 0 0 0:91

2

6666666664

3

7777777775

:

• Mass density:

q ¼ 7840 kg=m3: (F1)

The stiffness tensor indicated here has been rotated by 908
around ex and then around ey (extrinsic, passive rotation),
such that the material coordinate system aligns with the one
in Fig. 1.
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