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Daniel A. Kiefer

Elastodynamic quasi-guided waves  
for transit-time ultrasonic flow metering

A non-invasive ultrasonic flow meter is studied for which the pipe remains unperforated 

and without obstructions in its interior. Elastic waves that are excited inside the pipe 

wall interact with the adjacent fluid to form quasi-guided waves. These can be either of 

leaky or trapped kind. The radiation of the leaky waves is exploited to insonify the pipe‘s 

interior. The quasi-guided waves are studied in-depth with particular emphasis on their 

radiation behavior. Highly reliable and efficient computational methods are developed 

for this purpose. The ultrasonic transit time in the flow meter is modeled systematically 

based on the aforementioned waves. Thereby, the effects of fluid flow and temperature 

are included explicitly in an analytical manner. Compared to conventional ultrasonic flow 

meters, we find that devices based on quasi-guided waves exhibit a strongly reduced 

cross-sensitivity to temperature, which is also confirmed experimentally. The developed 

analytical and numerical techniques enable a systematic optimization of such devices 

with regard to their temperature-dependent behavior, geometrical uncertainties, material 

aging, as well as scaling and deposition of other layers.
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Abstract

Flow meters measure the amount of a fluid passing through a pipe per unit of

time. Devices based on ultrasound are popular due to their robustness, low

pressure loss and ease of installation. These strengths are best harnessed in a

noninvasive setup like clamp-on meters, when the pipe is not perforated and

the insonification of the pipe is performed from the outside. This leads to

some unresolved difficulties: transmission loss through the pipe wall, critical

transducer alignment, and excitation of guided waves inside the pipe wall.

These waves travel along the pipe wall, exhibit intricate dispersive propagation

behavior, and may interfere with the fluid-borne ultrasonic signal that is to be

evaluated. For these reasons, guided waves are usually undesired. However,

as they represent the generalized pipe wall resonances, the guided waves are

difficult to avoid.

Subject of this dissertation is a noninvasive transit-time ultrasonic flow meter

which explicitly excites leaky guided waves to resolve the aforementioned

challenges. Leaky waves gradually transfer their energy into the fluid and

efficiently insonify the interior of the pipe. A model of the flow meter is

developed that accounts for the exact pipe wall mechanics. Thereby, all wave

paths through the device are treated in a consistent manner and the effects

of dispersion, wave convection and temperature are included. The resulting

ultrasonic time-of-flight expression from transducer to transducer is simpler

than the conventional expression obtained by considering an effective wave

speed. The discrepancies are examined and explained in detail.

An extensive analysis of cross-sensitivities is performed using the model.

It reveals that guided wave-based meters are significantly less affected by

temperature. This is a result of the temperature-dependent radiation angle of

leaky waves, which partly compensates temperature-induced changes in the

fluid wave speed. Furthermore, the analysis exposes the device’s robustness

with regard to material and geometry uncertainties, aging as well as scaling

inside the pipe.

The interaction between the pipe wall and the fluid is of major interest. It

is analyzed by means of a fluid-coupled plate model, thereby accounting for

the analytically exact fluid-structure interaction. Waves in this system are

described by an intricate nonlinear eigenvalue problem. A robust solution

technique is devised that allows to reliably obtain all eigensolutions. Trapped

xi



Abstract

and leaky waves are found and their complex physical behavior is discussed

in detail.

Experiments substantiate the validity of the model. Dispersion curves of

leaky guided waves in plates are acquired via laser Doppler vibrometry, while

their radiation field is visualized with schlieren photographs. A flow meter

prototype is tested under varying flow rate and temperature, whereby the

upstream and downstream signals are recorded. The signal analysis reveals a

very good agreement between the measured data and the developed theoreti-

cal transit-time model, in particular, it confirms the reduced cross-sensitivity

to temperature of the device.

xii



Kurzfassung

Durchflussmesser bestimmen die Menge eines Fluides welches pro Zeitein-

heit durch ein Rohr fließt. Geräte basierend auf Ultraschall sind beliebt, da

sich diese durch hohe Robustheit, geringen Druckverlust und leichte Installa-

tion auszeichnen. Diese Stärken werden bei nicht-invasiven Aufbauten wie

Clamp-on Geräten ausgespielt, bei denen das Rohr verschlossen bleibt und

die Beschallung von außen stattfindet. Hierbei treten jedoch einige ungelöste

Schwierigkeiten auf: Transmissionsverluste durch die Rohrwand, kritische

Ausrichtung der Wandler und Anregung von geführten Wellen in der Rohr-

wand. Diese Wellen breiten sich entlang der Rohrwand aus, weisen kompli-

ziertes dispersives Ausbreitungsverhalten auf und können mit dem Nutzsignal

interferieren. Aus diesen Gründen sind die geführten Wellen üblicherweise

unerwünscht. Allerdings sind sie schwer zu vermeiden, da sie die verallgemei-

nerten Dickenresonanzen der Rohrwand darstellen.

Gegenstand dieser Dissertation ist ein nicht-invasives, laufzeitbasiertes Ultra-

schall-Durchflussmessgerät, welches explizit geführte abstrahlende Wellen

anregt, um die genannten Schwierigkeiten zu überwinden. Diese Wellen geben

ihre Energie graduell an das Fluid ab und beschallen effizient das Innere des

Rohres. Das Durchflussmessgerät wird unter Betrachtung der exakten Mecha-

nik der Rohrwand modelliert. Dabei werden alle akustischen Pfade durch

das Gerät konsistent behandelt und die Effekte von Dispersion, Schallkon-

vektion und Temperatur berücksichtigt. Der resultierende Ausdruck für die

Ultraschalllaufzeit zwischen den Wandlern ist einfacher als der konventio-

nelle Ausdruck, der durch betrachten einer effektiven Schallgeschwindigkeit

hervorgeht. Die Unterschiede werden untersucht und im Detail erklärt.

Eine ausführliche Analyse der Querempfindlichkeiten wird anhand des Mo-

dells durchgeführt. Sie offenbart, dass Durchflussmesser auf Basis geführter

Wellen deutlich weniger temperaturabhängig sind. Dies ist ein Resultat des

temperaturabhängigen Abstrahlwinkels der geführten Welle, welcher der

Änderung der Schallgeschwindigkeit im Fluid entgegenwirkt. Des Weiteren

quantifiziert die Analyse die Robustheit des Geräts hinsichtlich Unsicherhei-

ten im Material und der Geometrie, Alterung sowie Kalkablagerungen.

Die Interaktion zwischen der Rohrwand und dem Fluid ist von zentralem

Interesse. Dies wird anhand einer fluidbelasteten Platte modelliert, wobei die

analytisch exakte Fluid-Struktur-Interaktion berücksichtigt wird. Wellen in
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Kurzfassung

diesem System werden durch ein kompliziertes nichtlineares Eigenwertpro-

blem beschrieben. Eine robuste Lösungsmethodik wird entwickelt welche es

erlaubt, zuverlässig alle Eigenlösungen zu bestimmen. Ideal geführte sowie

abstrahlende Wellen werden als Lösungen gefunden und deren komplexes

physikalisches Verhalten wird im Detail diskutiert.

Experimente belegen die Gültigkeit des aufgestellten Modells. Dispersionskur-

ven geführter abstrahlender Wellen in Platten werden mittels Laser-Doppler-

Vibrometrie erfasst, während das abgestrahlte Feld mit Schlierenfotografien

visualisiert wird. Ein Prototyp des Durchflussmessers wird unter variablem

Durchfluss und Temperatur getestet, wobei die Ultraschallsignale flussauf-

und flussabwärts aufgezeichnet werden. Die Signalanalyse offenbart eine sehr

gute Übereinstimmung der Messdaten zum aufgestellten Laufzeitmodell, ins-

besondere bestätigt es die geringere Temperaturempfindlichkeit des Gerätes.
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1 Introduction to flowmetering

This monograph is a contribution to transit-time ultrasonic flow metering

(UFM). The research is performed in context of low-cost household water

metering, but the presented concepts and ideas are equally applicable to any

other UFM system. This chapter discusses the general relevance, challenges

and requirements of flow metering. The need for flow metering and, in

particular, water metering is addressed in Sec. 1.1. The basic concepts of

ultrasonic flow meters and the corresponding classical design principles are

introduced in Sec. 1.2. Lastly, in Sec. 1.3 and 1.4 we present and discuss the

device that is proposed and studied in this project and explain the need for

new modeling approaches.

1.1 Importance of flowmetering and available devices

Flow meters measure the amount of fluid, i.e., liquid or gas, passing through

a pipe per unit time [1–3]. Knowledge of the flow rate is essential for process

monitoring and control as well as billing. For instance, it facilitates correct

dosing in production processes of the pharmaceutical, chemical and food

industry. The market share by end user is shown in Fig. 1.1a. The biggest field

of application is custody transfer in the oil and gas industry (26 %) [4]. The

purpose of billing and leak detection is also pursued in the water supply and

wastewater industries (12 %) [4].
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Figure 1.1: Global flow meter market share in 2015 according to [4].
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1 Introduction to flow metering

The total flow meter market value in 2018 was estimated at $7.3 billion [5].

With increasing degree of automation and sustainability demands of industrial

processes, the market is expected to show a compound annual growth rate

(CAGR) of about 6 % from 2019 to 2026 [5].

A large variety of flow meter types is available. An estimate of the allocation of

the market by meter type is presented in Fig. 1.1b. Ultrasonic flow meters hold

about 14 % market share [4] and are regarded as one of the “major players”

that will profit of the prognosticated market growth. They can further be

classified into transit-time, Doppler or hybrid meters, whereby transit-time

ultrasonic flow meters are the most common, representing about 80 % of the

ultrasonic devices [6].

The popularity of ultrasonic flow meters is attributed to (i) their relatively

low cost, (ii) low pressure loss (possibly zero), (iii) ease of installation, (iv)

high robustness and reliability, (v) universal applicability to different kind of

fluids and gases, and (vi) good scalability to different pipe sizes and flow rates.

Accordingly, UFM finds application in all industry segments.

Household watermetering

Water is arguably more fundamental than any other
resource - to life itself, supporting a huge array of ecosystem
services, and to every economy and society.

Report of the United Nations Environment Programme [7]

The major argument for water metering is resource conservation. Billing

per amount of consumption is an important incentive for usage reduction.

Residential water use may thereby decreases by about 20 % [8]. This is the

main justification for national policies mandating household water metering,

e.g., in Germany. Another important benefit is that it enables leak detection

in the supply infrastructure. Moreover, some argue that meter-based billing

is fundamental for fairness reasons, as they do not want to subsidies those

who have an above-average water usage.

Metering of household potable water consumption is widely practiced in

most industrialized countries – an exception being the United Kingdom, with

only about 50 % coverage [9]. Other countries, e.g., Germany, have almost

complete coverage and are moving towards per-apartment accounting [10].

The degree of proliferation in developing countries varies form almost none

to almost complete.
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1.2 Ultrasonic transit-time devices

Singapore is probably the most advanced country in terms of water conserva-

tion and management, being one of the countries with highest decrease in per

capita consumption in the past 40 years [7]. This was achieved through strong

programs promoting water usage efficiency and efforts to reduce leakage (5 %

unaccounted-for water, might be as high as 90 % in other cities). Consump-

tion awareness was additionally increased by recent pilot projects using smart

water meters that provide real-time data to the residents [11].

Despite the above mentioned relevance of efficient household water usage,

it is important to keep in mind that other sectors are more relevant towards

the overall goal. In Europe the water use by economic sector is: agriculture

(58 %), energy (18 %), mining, manufacturing and construction (11 %), house-

holds (10 %) and service industries (3 %) [12]. Accordingly, the indirect water

footprint of consumers is higher and should be given attention [7]. Having

discussed the overall significance of water management, we will, hereinafter,

focus on the technology of ultrasonic water metering.

Albeit their general popularity, UFM devices are not often employed for house-

hold water metering because of the high costs compared to the more common

positive displacement and jet/impeller meters. Nonetheless, they exhibit

evident advantages as water meters that distinguish them from the latter:

(i) excellent robustness, (ii) no metering of airflow, (iii) correct sensing of

reverse flow and (iv) low pressure drop. They achieve robustness by com-

pletely avoiding failure prone moving parts. This is of particular importance

when extraneous particles (e.g., sand) are found in the pipe network. In many

regions, loss of pressure in the pipes with consequent air rush is common. Con-

ventional jet meters are very sensible to the fast flow of air, leading to wrong

readings. In the same situation, back flow of water occurs which also leads

to biased readings of the mechanical meters. By avoiding these difficulties,

ultrasonic flow meters remain relevant in the water metering market.

1.2 Ultrasonic transit-time devices

The term UFM will, henceforth, implicitly refer to transit-time ultrasonic

meters. Their fundamental working principle is simple: an ultrasonic wave

traveling with the fluid flow is faster than against the flow [1, 2, 13]. This

situation is sketched in Fig. 1.2. The phenomenon is called wave convection.

By measuring the upstream-downstream difference in transit time between

two ultrasound emitters/receivers (i.e., transducers), the mean flow velocity

of the fluid can be determined. The latter is then converted to a volumetric

flow rate measured in m3/s (or L/h), see Subsec. 1.2.4.
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1 Introduction to flow metering

ray vel. 𝒗p

flow vel. 𝒗0wave vel. 𝒄f

downstream:

flow vel. 𝒗0
ray vel. 𝒗p

wave vel. 𝒄f
upstream:

Figure 1.2: Physical phenomenon harnessed by transit-time UFM devices: convection of

ultrasonic waves in a flowing medium. The phase fronts of the convected ray are also shown.

1.2.1 Classification of designs

The initially mentioned strengths of UFM are not equally met by every device.

Instead, a wide variety of configurations exists that provide the desired prop-

erties. The main design traits are summarized in the following according to

Ref. [1].

One can differentiate between two fundamental kind of configurations shown

in Fig. 1.3:

in-line devices, which need to be inserted into the pipe system, and

clamp-on meters that can be mounted on existing installations.

The latter are characterized by not possessing any special pipe section and

can be mounted on existing installations without interrupting the fluid flow.

Albeit the obvious advantages of clamp-on systems, two thirds of the market

are served by in-line devices [14]. This can be attributed to the mounting

difficulties as well as technical challenges of clamp-on meters [14, 15], which

basically restricts their use to the high investment sectors (e.g., oil and gas).

pipe

meas. unit

flow meter

(a) inline

existing pipe installation

meas. unit

flow meter

(b) clamp-on

Figure 1.3: In-line and clamp-on configurations.

Clamp on systems are always non-invasive designs, while in-line variants could

be either invasive or non-invasive as depicted in Fig. 1.4b. The pipe of

invasive systems is perforated, while for

4



1.2 Ultrasonic transit-time devices

non-invasive configurations it remains entirely sealed.

The former are technically simpler to realize and operate, as the ultrasonic

transducers (T1/T2) are in direct contact with the fluid and, hence, indepen-

dent of the pipe wall mechanics. However, non-invasive meters are regarded

as superior, as they guarantee leak tightness and protect the fluid good against

external contaminants.

T1 T2

(a) invasive

T1 T2

(b) non-invasive

Figure 1.4: Invasive and non-invasive configurations. T1/T2: transducers.

According to Fig. 1.5, a further important classification is into

intrusive setups that influence the fluid flow, and

non-intrusive ones, which leave the flow unaffected.

The former may cause swirls at the measurement point and thereby affect

the flow profile 𝒗0. This is usually undesired, as it will lead to measurement

errors if these complex fluid mechanical phenomena are not accounted for.

Furthermore, the swirls lead to pressure loss in the pipe system.

T1 T2

𝒗0
	

	
	 	

	
	

	 	 	 	
	
	swirls

(a) intrusive

T1 T2

𝒗0

(b) non-intrusive

Figure 1.5: Intrusive and non-intrusive configurations (both invasive). 𝒗0: fluid flow velocity.

1.2.2 Wave-path configurations

Different ray paths between the sending and receiving elements can be ex-

ploited. Common setups are exemplarily sketched in Fig. 1.6 according to

Ref. [1].

U-path systems (Fig. 1.6a) make use of acoustic mirrors to obtain a ray that is

aligned with the fluid flow. Consequently, the upstream-downstream differ-

ence in transit time is maximized.
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T1 T2

mirrors

(a) U-path

T1

T2

(b) \-path

T1 T2

(c) V-path

T11

T12

T21

T22

(d) dual-path

Figure 1.6: Common ultrasonic ray path configurations.

The mirrors can be avoided by installing an oblique ray path (Fig. 1.6b). This is

not very convenient, as the transducers need to be mounted on opposite sides

of the pipe. As a good alternative, a V-path (Fig. 1.6c) can be used by letting

the beam reflect at the lower pipe wall. The larger axial propagation distance

leads to a beneficial increase in the upstream-downstream differential time of

flight. This idea can be continued by exploiting more reflections. However, at

every reflection the ultrasonic signal suffers an inconvenient loss in amplitude.

Moreover, multi-path systems are also used (Fig. 1.6d) [1, 14, 16, 17]. An

arbitrary number of paths could be installed, e.g., by mounting the transducers

eccentrically on the pipe. The advantage of these devices is that they can

(partly) acquire the flow profile and correctly account for it. Usually, an

increased number of transducers is required to operate the ray paths, albeit

just two phased array/matrix transducers are also feasible [14]. In any case,

conventional multi-path systems lead to a massive increase in complexity of

the electronics and are not suitable for low-cost meters.

Lastly, we remark that a ray propagating in transversal direction to the fluid

flow could also be harnessed. Instead of changes in time of flight, this relies

on the displacement of the beam in downstream direction as it is convected

with the flow [2]. However, this form of operation is considered unstable [2]

and is not commonly used in practice.
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1.2 Ultrasonic transit-time devices

1.2.3 Normally vs. obliquely radiating transducers

Inspect again Fig. 1.5 (or 1.4), where an intrusive and a non-intrusive configu-

ration is shown. They are different in a further aspect: while in Fig. 1.5b the

transducer’s active surface is aligned with the fluid flow, it is not in Fig. 1.5a.

This is possible because the transducers in Fig. 1.5b insonify the fluidobliquely

with respect to their own surface. On the other hand, transducers as in Fig. 1.5a

radiate and receive ultrasound normally to their surface. The latter will be

denoted as piston-type transducers hereon after.

A distinction according to the inclination of the transducer’s active surface is

not usually made in the literature. It will be shown in this monograph (see

Chap. 6) that differences arise with regard to how their respective time of

flight should be modeled. For this reason, we introduce this classification at

this point.

1.2.4 Volumetric flow rate determination

The ultimate goal of flow metering is to determine the volumetric flow rate [1,

2], which represents the total fluid volume passing through a section of the

pipe per unit time. It is defined as the integral of the flow velocity over the

cross-sectional area of the pipe. For the rectangular cross-section seen in

Fig. 1.7a, it is given by

𝑄
def
= ∫

𝑑

0

∫
𝑏

0

𝑣0(𝑦, 𝑧)d𝑦d𝑧 = 𝑏𝑑𝑣A , (1.1)

where 𝑣0(𝑦, 𝑧) is the flow velocity profile and 𝑣A
def
=

1

𝑏𝑑
∫
𝑑

0
∫
𝑏

0
𝑣0(𝑦, 𝑧) d𝑦d𝑧 is

denoted as average area velocity.

𝑑

𝑏

𝒆𝑧
𝒆𝑦

(a) transversal cross section.

𝒙 p
(𝑡
)𝜃

𝑣A

𝑣0(𝑦, 𝑧)

𝒆𝑥

𝒆𝑦

(b) axial cross section axial

Figure 1.7: Schematic flow profile and a V-path ultrasonic ray through a rectangular pipe.
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1 Introduction to flow metering

Neither the flow profile 𝑣0(𝑦, 𝑧) nor the average area velocity 𝑣A are known in

conventional UFM systems. Instead, the acquired upstream-downstream dif-

ferential time of flight is proportional to the average 𝑣0 along the ray path 𝒙p(𝑡)

sketched in Fig. 1.7b. This path is traced over time 𝑡 as the wave packet propa-

gates (for details refer to Sec. 6.1). The average over the ray path of length 𝐿 is

given by

𝑣0 =
1

𝐿
∫
𝐿

0

𝑣0(𝒙p)d𝑥p =
1

𝑏
∫
𝑏

0

𝑣0(𝑥p, 𝑦p, 𝑧p)d𝑦p , (1.2)

where the latter equality holds because the flow velocity 𝑣0(𝑦, 𝑧) is assumed

to be independent of the axial coordinate 𝑥 and the ray propagates in the

𝑥-𝑦-plane. To handle the lack of information about 𝑣A in the ultrasonic signal,

the calibration factor 𝐾 = 𝑣A/𝑣0 is conventionally introduced such that [1, 2]

𝑄 = 𝐾𝑏𝑑𝑣0 . (1.3)

The calibration factor 𝐾 depends on the Reynolds number Re, which is a

dimensionless quantity characterizing the flow. For flow inside a pipe, it is

defined as Re =
𝑣0𝐷H

𝜈f
[1, 2], where 𝜈f is the kinematic viscosity of the fluid

and 𝐷H denotes the hydraulic diameter of the pipe. For a rectangular pipe

of dimensions 𝑏 × 𝑑 and 𝑏 ≈ 𝑑, the latter is again defined as 𝐷H =
2𝑏𝑑

𝑏+𝑑
. The

Reynolds number essentially identifies the ratio between inertial and viscous

force densities and in this way makes situations with different structural

dimensions and flow velocities comparable [2]. Flow below the critical value

of Re = 2300 is denoted as laminar, above Re = 4000 as turbulent and in

between as transitional.

Any flow profile 𝑣0(𝑦, 𝑧) always results in 𝐾 < 1 [1]. In the laminar flow

regime, 𝐾 is a constant. For transitional flow it increases with the mean flow

velocity 𝑣0, tending to a value close to unity for turbulent flow [1, 3, 18]. With

this, the flow rate 𝑄 is non-linearly dependent on 𝑣0. In any case, once the

calibration factor 𝐾(𝑣0) has been determined, it is possible to obtain 𝑄 from

𝑣0 using (1.3).

So far, the width of the ultrasonic beam has been neglected. In fact, the

metering system does not only average along the infinitely thin ray path,

but additionally over the beam’s entire cross section. This corresponds to

making the ray path – which is drawn in Fig. 1.7a as a thin line – wider. For a

homogeneous insonification, when the beam width tends towards the pipe

width 𝑑, the ray path average 𝑣0 tends towards the area average 𝑣A because the

averaging is effectively performed on the whole cross section. This means that
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1.2 Ultrasonic transit-time devices

a wide insonification of the pipe can lead to direct acquisition of the average

area velocity 𝑣A [19, 20], as needed for UFM.

The above is a short and rather schematic delineation of the involved fluid

dynamics. This intricate topic is outside the scope of this monograph. Instead,

for description of ultrasonic wave propagation through the system, we will

assume a steady and homogeneous “equivalent flow” profile, resulting in

𝑣0 = 𝑣0 = 𝑣A and 𝐾 = 1. The factor 𝐾 is kept in the equations for the sake of

generality and later calibration.

1.2.5 Temperature compensation

There is one important practical difficulty in water metering with UFM: the

sound speed of water 𝑐f(𝒯) is highly dependent on the temperature 𝒯. As a

consequence, the upstream-downstream differential time of flight depends

not only on the flow velocity 𝑣0, but additionally on the temperature 𝒯. It

is crucial for conventional water meters to actively compensate this cross-

sensitivity [2, 3].

A simple and common solution is to measure the temperature 𝒯 during oper-

ation and use a pre-determined look-up table to identify the effect on the

meter’s sensitivity. However, this requires a temperature sensor inside the

pipe. This is undesirable for non-invasive meters because the pipe needs to

be perforated, the sensor disturbs the flow and additional components are

required.

The conventional method for sensor-free temperature compensation consists

in using the mean (or sum) of the upstream and downstream time of flights in

addition to the difference of the two [1–3, 17]. The mean does not depend on

the fluid flow and can directly be used to determine the wave speed 𝑐f(𝒯). In a

second step, the flow velocity (flow rate) is obtained from the differential time

of flight. Overall, this leads to a wave speed-independent formulation. The

method has, however, one caveat: the mean is an absolute time of flight, which

in practice is biased by an unknown initial delay (due to the electronics and

ultrasonic transit time through the transducers). This fact is a serious obstacle

for practical implementation and is sometimes overcome by an additional

calibration step.
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1 Introduction to flow metering

1.2.6 Challenges and requirements for UFMwatermeters

All UFM devices have some common basic challenges, namely, (i) small time-

of-flight differences, (ii) zero-flow error due to a non-reciprocity bias, (iii) non-

linear dependence on the flow velocity, and (iv) dependency on the flow profile

(e.g., asymmetric after a bent pipe section). Current electronics are able to

precisely measure time differences, mostly resolving (i) and (ii). The read-out

is classically done with analogue electronics that sense the zero-crossing of

the signal. Microcontroller-based alternatives offering digital signal process-

ing capabilities have only emerged recently for the low-power segment [21].

Furthermore, the calibration mentioned in Subsec. 1.2.4 is done to tackle

(iii). With regard to (iv), the interior of the pipe is sometimes designed to

“condition” the flow, that is, to homogenize it. Alternatively, it is also common

to ensure that the flow meter is operated with a sufficiently long straight inlet.

Water meters for household applications compete in a diverse low-cost mar-

ket segment. Ultrasonic meters are commonly in-line, invasive and possibly

intrusive single-path designs, which represents the simplest setup. Unfor-

tunately, some of the major potentials of ultrasonic systems are thereby not

harnessed. Nonetheless, strong requirements are to be met by water meters:

maintenance-free operation for many years in a mostly uncontrolled environ-

ment, where parameters like temperature, pressure, chemical properties of

the fluid and particles in suspension may vary strongly. Therefore, robustness

is a high priority and self-calibration is desired. The latter, however, may lead

to difficulties at time of official verification. Furthermore, the devices are

designed for low power consumption and may operate up to 16 years on a

small form factor battery [22].

Lastly, non-invasive setups (e.g., clamp-on systems) suffer of some widely unre-

solved issues: (i) inefficient insonification due to transmission loss through

the pipe wall, (ii) critical transducer alignment, and (iii) excitation of elastic

guided waves that propagate along the pipe wall [14, 15]. The guided waves are

also referred to as “structure-borne” ultrasound and are commonly undesired.

This shall be discussed in more detail in the following.

Mechanics of the pipewall

The traditional and widespread model to describe the insonification of the

pipe’s interior with a non-invasive transducer is sketched in Fig. 1.8a [2, 3, 14,

15, 18, 23]. A single plane harmonic wave is expected to propagate through

each of the three domains representing the transducer (wedge), the pipe wall
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1.2 Ultrasonic transit-time devices

and the fluid. The ray is refracted at every interface according to Snell’s law of

matching traces, finally insonifying the fluid at certain angle.

pipe wall

fluid

wedge

plane

wave

(a) desired

longitudinal and

transverse waves

(b) actual

Figure 1.8: Non-invasive insonification of a pipe: comparison of desired and actual ray pattern.

In this classical model, a transverse wave is usually desired in the pipe wall

because its impedance is better matched to the fluid. Even so, poor trans-

mission factors from transmitter to receiver of typically 0.2 % to 2 % are

obtained [3]. Some clamp-on systems are designed aswide beamflow meters [2,

3] by choosing the wedge angle so that the wave refracts into the pipe wall

at 90° out of the surface normal, i.e., along the pipe. In this way, a wave is

obtained that insonifies the interior over a large axial distance.

Unfortunately, these ideas are somewhat inaccurate and certainly incomplete

to describe the pipe wall mechanics. A more accurate sketch of the actually

arising situation is shown in Fig. 1.8b (still over-simplified in the wedge region).

At every interface, the coupled longitudinal and transverse plane waves reflect

and refract with mode conversion occurring thereby. In this way, a complex

interference pattern builds up in the pipe wall, giving rise to the previously

mentioned (quasi)-guided waves. These are intrinsic to the problem and

unavoidable for thin-walled pipes.

Interference occurs whenever the ultrasonic pulse of duration 𝐷 and longitudi-

nal wave speed 𝑐l overlaps with its reflection, i.e., when the pipe wall thickness

ℎ < 𝑐l𝐷/2 (for the signal components propagating in direction normal to the

pipe wall). For a metallic pipe (𝑐l ≈ 6 mm/µs) at 1 MHz (assuming a short

pulse with 𝐷 ≈ 3 µs), this is typically the case whenever the wall is thinner

than ≈ 10 mm, which is practically always fulfilled. To some extend, it may be

possible to mainly excite a transverse wave propagating at an angle out of the

pipe wall normal. In this case, the range of validity of the plane wave model

extends down to smaller wall thicknesses. However, this will always represent

a rather strong simplification. Guided waves are a more appropriate concept

to model the actual mechanics, in particular, when thin-walled pipes are of

interest.
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The guided elastic waves result in some undesired complications: (i) multiple

waves propagating at different velocities exist, (ii) they propagate dispersively,

i.e., their propagation velocity is frequency-dependent, and (iii) some of them

reach the receiver without coupling out into the fluid. When these waves

superpose with the desired V-path signal at the receiver, the time-of-flight

read-out will be biased. To date, this is regarded the major difficulty of clamp-

on devices [14]. For this reason, the guided waves are commonly understood as

an undesired by-product, which needs to be suppressed or filtered out [1, 14, 15,

24, 25]. Given the fact that these waves represent the (practically) unavoidable

thickness resonances of the thin pipe wall, this is an awkward position to take.

1.3 Proposed design: Lambwave-based flowmetering

A different standpoint is taken in this monograph: reckoning that the guided

waves fully describe the wave motions of the pipe wall, they are regarded as

the foundation to precisely model the flow meter. In particular, this approach

extends the classical model, as it is also valid for operation at the (generalized)

pipe wall thickness resonances, i.e., the guided waves. With such a model at

hand, quasi-guided waves that radiate into the fluid – so-called leaky Lamb

waves – are deliberately excited to operate the flow meter. Although rather

uncommon, this idea is not new [26, 27] and Lamb wave-based devices already

exist on the market [28, 29]. Nonetheless, the literature mostly focuses on

classical modeling approaches and comparably few publications explicitly

study Lamb wave-based meters [30, 31].

Subject of this dissertation is an in-line, non-invasive and non-intrusive transit-

time ultrasonic flow meter in V-path configuration. The setup is sketched

in Fig. 1.9. It consists of a specifically designed pipe section and a clamp-

on measurement unit, which encloses the transducers and electronics. The

sending transducer (S) generates a leaky Lamb wave, which propagates in

axial direction inside the pipe wall and thereby radiates into the pipe’s interior

at an angle. The radiated ultrasonic wave propagates in a V-path through the

flowing medium. After coupling back into the upper pipe wall, it is sensed by

the receiver (R).

Albeit this meter cannot be mounted on existing pipelines, it inherits all

remaining advantages of clamp-on devices:

� Modular design: the metering unit can easily and safely be exchanged

without interrupting the fluid flow (once the pipe section has been

mounted).
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S/R

(a) transversal

measurement unit
S R

flow 𝒗0

V-
pa
th

quasi-guided waves

(direct path)𝜃

(b) axial

Figure 1.9: Setup of the proposed Lamb wave-based flow meter.

� The pipe interior is free of any components, avoiding obstruction and

swirling of the flow. Furthermore, this counteracts the deposition of

extraneous matter inside the pipe.

� With no perforations in the pipe, the system is guaranteed to be leak

tight. Moreover, the fluid is protected against contamination from the

exterior.

At the same time, the common difficulties of clamp-on systems associated with

insufficient knowledge about the pipe material and geometry are avoided [14,

15].

Instead, it is even possible to design the pipe section according to the require-

ments of the metering task. We use a rectangular pipe that is designed to

(i) condition the fluid flow [32], (ii) insonify the entire pipe cross section [19,

20], and (iii) support (quasi)-guided waves with desired properties. The

excited quasi-guided wave easily extends over an entire face of the rectangular

pipe. As shown in Fig. 1.9a, this leads to a wide insonification of the pipe’s

interior. Although difficult to achieve in practice, a homogeneous insonifica-

tion would be desirable. As discussed in Sec. 1.2.4, in this case the acquired

time of flight would be proportional to the desired average area velocity 𝑣A,

which in turn is directly proportional to the volumetric flow rate 𝑄. Under

such ideal conditions, the calibration factor 𝐾 would then be avoided entirely.

Further advantages will be obtained when operating the flow meter with leaky

guided waves. The insonification is expected to be more efficient because the

guided waves are directly associated with the transmission maxima of the pipe

wall [33]. Moreover, lowly attenuated guided waves spread over a wide range

along the pipe, reason for which the axial positioning of the transducers is

uncritical. At the same time, the radiated wave is plane in good approximation,

facilitating the use of simple ray models. However, the axial spreading of the
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beam counteracts the good transmission rate, leading to lower signal-to-noise

ratio at the receiver.

In addition to the V-path, direct path signals are obtained at the receiver.

These are due to guided and quasi-guided waves that have not fully coupled

out into the fluid. The direct path waves carry additional information about

the system’s state, e.g., temperature or scaling of the pipe. Within the (quasi)-

guided wave framework, it is possible to leverage this additional information

to compensate cross-sensitivities, as will be demonstrated in Chap. 7 and

Chap. 8.

As discussed previously, multi-path flow metering can increase the measure-

ment accuracy. With the proposed setup, it is feasible to radiate into the pipe

at different angles by simply changing the excitation frequency and/or elec-

trically re-configuring the transducers [34]. In this way, multiple ultrasonic

paths through the fluid can be harnessed without installing more transducers.

1.4 Goal and structure of this monograph

The goals of this monograph are to

� Develop a model for non-invasive flow meters that accounts for the

exact pipewall mechanics.

� Include the effect of wave convection in the model.

� Account for temperature in the model and assess its impact.

� Perform an extensive analysis of cross-sensitivities (pipe wall thickness

and material, frequency, scaling, dezincification, temperature).

� Provide a systematic quantitative assessment of all possible operating

points (frequency, waveguide modes, pipe material and geometry, etc.).

Thereby, all possible wave paths through the device are modeled precisely in

a consistent manner. The interaction of guided elastic waves with the fluid

is studied in detail. The arising mathematical problem is uncommon and

poses special challenges. Stable numerical solution methods are devised and

implemented.

The monograph is structured as follows: CHAP. 2 is an introduction to general

elastodynamic field theory and plane harmonic waves in solids and serves

as ramp-up. CHAP. 3 is divided into two sections: 3.1 is a review on guided

waves in elastic plates in vacuum, while 3.2 extends this idea to plates that

are in contact with a fluid, denoted as quasi-guided waves. Although this
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notion is not entirely new, the latter section presents mostly new findings

developed in this project. CHAP. 4 presents both the traditional as well as

the newly developed numerical solution methods for quasi-guided waves.

CHAP. 5 introduces the experimental methods, principles and setups used

to conduct the work. Not only electro-mechanical transducers are used, but

also optical measurement methods. CHAP. 6 first introduces the well-known

theory of ultrasonic convection and then proceeds to develop a time-of-flight

model for Lamb wave-based flow meters. It also discusses the relationship to

the conventional model that relies on effective wave speeds. Moreover, the

incidence and reflection of ultrasound from the pipe wall is discussed here.

CHAP. 7 deals with cross-sensitivities, especially the influence of temperature

on the flow meter. CHAP. 8 validates the model experimentally with the help

of a prototype and presents measurement results. Lastly, concluding remarks

are given in CHAP. 9.
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2 Elastodynamic field theory

Before turning attention to elastodynamic guided and quasi-guided waves, the

general elastodynamic field theory shall be reviewed for the sake of reference

and as a starting point. The presentation in this chapter is mainly based on

an excellent book by Langenberg, Marklein and Mayer [35] (English transla-

tion [36]). Some adaptations and extensions are made to fit the following-up

topic of guided waves. We first introduce the theory in the physical time-

space domain in Sec. 2.1, before transitioning to the frequency-wave vector

domain in Sec. 2.2. Finally, plane harmonic bulk waves in unbounded media

are discussed in Sec. 2.3, which is a good preface for guided waves coming up

in the following chapter.

An explanation of the mathematical notation and a list of symbols is provided

in the table of symbols in the appendix.

2.1 Elastodynamic field in time-space domain

The elastodynamic field is described by the fundamental equations of elas-

todynamics in combination with constitutive relations. These two can be

combined to obtain the Navier’s equation. Each of the equations and some

special cases thereof are discussed in the following.

2.1.1 Fundamental equations of elastodynamics

Consider the motion of a deformable, solid and continuous medium. The

linearized evolution of the field in space 𝒙 and time 𝑡 is described by the

fundamental equations of linear elastodynamics given by [35]:

𝜕𝑡𝒋(𝒙, 𝑡) = ∇ ⋅ 𝑻(𝒙, 𝑡) + 𝒇(𝒙, 𝑡) (2.1a)

𝜕𝑡𝑺(𝒙, 𝑡) =
1

2
[∇𝒗(𝒙, 𝑡) + (∇𝒗(𝒙, 𝑡))

⊤
] + 𝒉(𝒙, 𝑡) , (2.1b)

where ∇ is the Nabla operator and •⊤ means transposition. The involved

quantities are denoted as momentum 𝒋, stress 𝑻, force density 𝒇, strain 𝑺,

particle velocity 𝒗 and prescribed strain rate 𝒉. The above equations are

called the Newton-Cauchy equation of motion and the strain rate equation,

respectively. In the following, we discuss each of the equations as well as the

involved field quantities in more detail.
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2 Elastodynamic field theory

Let’s first discuss (2.1b). We are interested in describing the deformation of the

body, i.e., the change of particle displacement with respect to their “natural”

position exhibiting no restoring forces [37]. In particular, rigid body motions

are not of interest. The linearized differential change in particle displace-

ment 𝒖(𝒙, 𝑡) is given by the displacement gradient ∇𝒖(𝒙, 𝑡). The gradient’s

symmetric part describes deformations of the body, while the antisymmetric

part can be shown to account for rigid body rotations [35]. The 2nd order linear

strain tensor 𝑺(𝒙, 𝑡) is, thus, defined as the symmetric part of the displacement

gradient [35, 37], i.e.,

𝑺(𝒙, 𝑡) =
1

2
[∇𝒖(𝒙, 𝑡) + (∇𝒖(𝒙, 𝑡))⊤] . (2.2)

Introducing the particle velocity vector as

𝒗(𝒙, 𝑡) = 𝜕𝑡𝒖(𝒙, 𝑡) , (2.3)

differentiating (2.2) with respect to time and adding the source term 𝒉(𝒙, 𝑡)

results in the strain rate equation given in (2.1b). The injected or prescribed

strain rate 𝒉(𝒙, 𝑡) is a symmetric 2nd order tensor. We remark that, as rigid

body motions have been eliminated from (2.1b), this equation is directly

connected to the stored elastic energy and the restoring internal forces.

The evolution of the restoring internal forces is described by (2.1a) as sketched

in the following according to Langenberg et al. [35]. Imagine an arbitrary

portion of the solid body with volume 𝑉 and enclosing surface 𝑆 as depicted in

Fig. 2.1. The prescribed volume force density 𝒇(𝒙, 𝑡) acts on every differential

volume element d𝑉 inside the volume and represents a source of the elastody-

namic field. Moreover, the force area density 𝒕(𝒙, 𝑡), called the traction, acts

on every differential, outward directed area segment d𝑺 = 𝒆n d𝑆.

ℬ

𝑆

𝑉

𝒆n

. 𝒕

𝒇

𝒙

Figure 2.1: Cut out volume 𝑉 of the body ℬ.

A linear relationship between the traction 𝒕(𝒙, 𝑡) and the surface normal 𝒆n(𝒙, 𝑡)

is postulated by Cauchy in the form

𝒕(𝒙, 𝑡) = 𝒆n(𝒙, 𝑡) ⋅ 𝑻(𝒙, 𝑡) , (2.4)

18



2.1 Elastodynamic field in time-space domain

where the proportionality is given by the 2nd order stress tensor 𝑻(𝒙, 𝑡). The

change in total linear momentum 𝒋(𝒙, 𝑡) inside 𝑉 can now be balanced with

the overall forces acting inside 𝑉 and on its surface 𝑆. In linearized form

(assuming 𝑉 constant), this may be stated as

𝜕𝑡∭
𝑉

𝒋(𝒙, 𝑡)d𝑉 =∬
𝑆

𝒕(𝒙, 𝑡)d𝑆 +∭
𝑉

𝒇(𝒙, 𝑡)d𝑉 . (2.5)

Using (2.4) and applying Gauss’ integral theorem results in

∭
𝑉

𝜕𝑡𝒋(𝒙, 𝑡)d𝑉 =∭
𝑉

∇ ⋅ 𝑻(𝒙, 𝑡) + 𝒇(𝒙, 𝑡)d𝑉 . (2.6)

Because the cut out volume 𝑉 is arbitrary, the above balance of linear momen-

tum is equivalent to the differential form given in (2.1a). Moreover, we note

that restricting the stress tensor to be symmetric additionally enforces the

conservation of angular momentum [35, 37]. In ferroelectric and ferromag-

netic materials, a torque density may act as a source of the elastodynamic field,

in which case the stress tensor is no longer symmetric [35]. This case will not

be considered in this monograph and the stress tensor is always assumed to

be symmetric.

2.1.2 Constitutive relations

Having discussed the two fundamental equations of elastodynamics given in

(2.1a) and (2.1b), it is now necessary to relate the two. Notice that the equations

make statements on different field quantities. The constitutive equations or

material laws relate the two equations by introducing a dependence between

the variables. The plentitude of possibilities for modeling the material will

always be subject to the two criteria “close to reality” and “simplicity” [35].

In this monograph, we will restrict to linear, time-invariant, homogeneous

and locally reacting models. Moreover, we will mostly be concerned with

instantaneously reacting materials, which implies a nondissipative behavior.

Such a material can be modeled by [35]

𝒋(𝒙, 𝑡) = 𝜌𝒗(𝒙, 𝑡) , (2.7a)

𝑺(𝒙, 𝑡) = 𝒔 ∶ 𝑻(𝒙, 𝑡) , (2.7b)

where 𝜌 is called the mass density and 𝒔 the 4th order compliance tensor. We

chose to model a scalar mass density as is conventional for ultrasonic NDT.

This is not a requirement, however, and a tensorial mass density is sometimes
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2 Elastodynamic field theory

used in geophysics [35]. Inserting the constitutive relations (2.7) into the

fundamental equations (2.1), we obtain

𝜌𝜕𝑡𝒗(𝒙, 𝑡) = ∇ ⋅ 𝑻(𝒙, 𝑡) + 𝒇(𝒙, 𝑡) , (2.8a)

𝒔 ∶ 𝜕𝑡𝑻(𝒙, 𝑡) =
1

2
[∇𝒗(𝒙, 𝑡) + (∇𝒗(𝒙, 𝑡))

⊤
] + 𝒉(𝒙, 𝑡) , (2.8b)

which reveals that the linear elastodynamic field of the considered materials

can be described by a system of coupled first order PDEs in terms of 𝒗 and 𝑻 –

the so-called state variables [38].

Instead of (2.7b), we will usually prefer the inverted equation

𝑻(𝒙, 𝑡) = 𝒄 ∶ 𝑺(𝒙, 𝑡) , (2.9)

with the 4th order stiffness tensor 𝒄 defined through [35]

𝒄 ∶ 𝒔 = 𝒔 ∶ 𝒄 =
1

2
[(𝑰𝑰)1342 + (𝑰𝑰)1324]

⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
symmetric part operator

, (2.10)

where 𝑰 = 𝛿𝑖𝑗𝒆𝑖𝒆𝑗 denotes the 2nd order identity tensor, 𝛿𝑖𝑗 is the Kronecker

delta, and the superindices denote the permutation of the tensors. The above

linear relation between strain and stress is referred to as Hook’s law or Cauchy-

Hook’s law. As 𝑺 and 𝑻 are symmetric, the stiffness tensor with coefficients

𝑐𝑖𝑗𝑘𝑙 is required to exhibit the symmetries [35, 37]

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑗𝑖𝑙𝑘 . (2.11)

Moreover, conservative systems are modeled with hermitian operators and

the real-valued stiffness tensor of nondissipative media additionally fulfills

the symmetry [35]

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 . (2.12)

The above symmetries reduce the number of independent coefficients of the

tensor from 81 to 21 [35, 37].

An important specialization of the strain-stress relation in (2.9) is attained

for isotropic materials. Their stiffness tensor is defined through rotational
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2.1 Elastodynamic field in time-space domain

invariance [37], which means that the material behavior does not depend on

the orientation in space. The isotropic stiffness tensor can be written as [35]

𝒄
def
= 𝜆L

𝑰 times trace of

⏞𝑰𝑰 + 𝜇L

2 times symmetric part of

⏜⎴⎴⎴⎴⏞⎴⎴⎴⎴⏜(𝑰𝑰1342 + 𝑰𝑰1324) (2.13)

= (𝜆L𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇L𝛿𝑖𝑙𝛿𝑗𝑘 + 𝜇L𝛿𝑖𝑘𝛿𝑗𝑙) 𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 , (2.14)

where the scalars 𝜆L and 𝜇L are called the Lamé parameters. We see that the

number of independent coefficients are reduced to only 2. The over-braces

describe the operations of 𝒄 when it acts on a 2nd order tensor (e.g., strain)

through double contraction.

This work has a strong focus on isotropic materials and will mostly be using

the above representation. Instead of the Lamé parameters, equivalent models

might use the [37]

� Young’s modulus 𝐸 = 𝜇L(3𝜆L + 2𝜇L)/(𝜆L + 𝜇L) and

� Poisson’s ratio 𝜈 = 𝜆L/2(𝜆L + 𝜇L)

or the [37]

� longitudinal wave speed 𝑐l = √(𝜆L + 2𝜇L)/𝜌 and

� transverse wave speed 𝑐t = √𝜇L/𝜌.

The latter wave speeds correspond to special modal solutions of the homoge-

neous isotropic medium and we will recall their derivation in Subsec. 2.3.1.

2.1.3 Navier’s equation: elastodynamicwaves

The goal in the following is to express the governing equations of elastody-

namics with only one equation and only one unknown field quantity. Using

(2.10) and exploiting the symmetry 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 of 𝒄, (2.8b) reduces to

𝜕𝑡𝑻(𝒙, 𝑡) = 𝒄 ∶ ∇𝒗(𝒙, 𝑡) + 𝒄 ∶ 𝒉(𝒙, 𝑡) . (2.15)

Inserting into the time derivative of (2.8a) yields [35]

∇ ⋅ [𝒄 ∶ ∇𝒗(𝒙, 𝑡)] − 𝜌𝜕2𝑡 𝒗(𝒙, 𝑡) = −𝜕𝑡𝒇(𝒙, 𝑡) − ∇ ⋅ [𝒄 ∶ 𝒉(𝒙, 𝑡)] , (2.16)

which is called Navier’s equation or elastodynamic wave equation [35]. It is a

second order PDE in time and space in terms of the single unknown 𝒗. For
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2 Elastodynamic field theory

our purposes, we can assume that the prescribed strain rate is zero, i.e., 𝒉 ≡ 𝟎.

We may then write the wave equation in terms of the displacement [35] as

∇ ⋅ [𝒄 ∶ ∇𝒖(𝒙, 𝑡)] − 𝜌𝜕2𝑡 𝒖(𝒙, 𝑡) = −𝒇(𝒙, 𝑡) . (2.17)

For isotropic and homogeneous materials, we replace the stiffness tensor given

in (2.13) into (2.17) and pull the material parameters out of the derivates to

obtain

𝜇L∇ ⋅ ∇𝒖(𝒙, 𝑡) + (𝜆L + 𝜇L)∇∇ ⋅ 𝒖(𝒙, 𝑡) − 𝜌𝜕
2
𝑡 𝒖(𝒙, 𝑡) = −𝒇(𝒙, 𝑡) . (2.18)

The above equation can also be represented in the form [35]

(𝜆L + 2𝜇L)∇∇ ⋅ 𝒖(𝒙, 𝑡) − 𝜇L∇ × ∇ × 𝒖(𝒙, 𝑡) − 𝜌𝜕
2
𝑡 𝒖(𝒙, 𝑡) = −𝒇(𝒙, 𝑡) . (2.19)

Herein, the first term is responsible for longitudinal waves (irrotational field),

while the second term accounts for transverse waves (solenoidal field) [35].

2.1.4 Acoustics

UFM with leaky guided waves relies on the interaction of elastodynamic waves

with a fluid and the propagation of acoustic waves inside the fluid. Acoustics

is a special (degenerate) case of elastodynamics. It can be obtained from the

elastodynamic fundamental equations by replacing in (2.1) [35]

1. the stress tensor𝑻with the hydrostatic stress state−𝑝𝑰, where 𝑝 is called

the acoustic pressure, and

2. the strain 𝑺 and prescribed strain rate 𝒉with their corresponding traces:

𝑆
def
= tr𝑺 and ℎ

def
= tr𝒉, which are called dilatation and prescribed

dilatation rate, respectively.

Using the constitutive relations

𝒋(𝒙, 𝑡) = 𝜌𝒗(𝒙, 𝑡) , (2.20a)

𝑆(𝒙, 𝑡) = −𝜅𝑝(𝒙, 𝑡) (2.20b)
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2.1 Elastodynamic field in time-space domain

for linear, homogeneous, nondissipative acoustic materials with adiabatic

compressibility 𝜅, the fundamental equations of acoustics can be stated as [35]

𝜌𝜕𝑡𝒗(𝒙, 𝑡) = −∇𝑝(𝒙, 𝑡) + 𝒇(𝒙, 𝑡) (2.21a)

−𝜅𝜕𝑡𝑝(𝒙, 𝑡) = ∇ ⋅ 𝒗(𝒙, 𝑡) + ℎ(𝒙, 𝑡) . (2.21b)

Similar to the elastodynamic case, these are coupled first order PDEs. The

number of degrees of freedom, however, have been reduced substantially

because the deviatoric stress 𝑻 −
1

3
𝑰 tr𝑻 is set to zero a-priori, allowing to use

the scalar acoustic pressure 𝑝 instead of the symmetric stress tensor. While

the elastodynamic case has 9 state-space variables (3 for 𝒗 + 6 for symmetric

𝑻), the acoustic equations has only 4 (3 for 𝒗 + 1 for 𝑝).

By taking the divergence of (2.21a) and inserting into the time derivative of

(2.21b), we obtain the wave equation for pressure acoustics [13, 35, 39]:

∇ ⋅ ∇𝑝(𝒙, 𝑡) −
1

𝑐f
𝜕2𝑡 𝑝(𝒙, 𝑡) = ∇ ⋅ 𝒇(𝒙, 𝑡) + 𝜌𝜕𝑡ℎ(𝒙, 𝑡) , (2.22)

with the speed of sound 𝑐f defined as

𝑐f
def
=

1

√𝜅𝜌
. (2.23)

Lastly, by inspecting the rotation of (2.21a), we see that in regions without

forcing, i.e., 𝒇 = 𝟎, the causal acoustic velocity field is free of rotations. This

is sometimes referred to as the compatibility condition [35]. As a consequence,

only longitudinal waves propagate in fluid media (see Sec. 2.3).

2.1.5 Boundary and interface conditions

Without the need for constitutive relations, the fundamental equations of

elastodynamics make statements on the field’s behavior across the boundary 𝑆i

of different materials with normal vector 𝒆n. This means that we have a

discontinuity of the material parameters on the surface 𝑆i. The situation is

sketched in Fig. 2.2.

In the following sections, we cite the conditions for several different cases as

derived in Langenberg et al. [35]. Thereby, we omit the explicit dependence on

𝒙 and 𝑡 for the sake of conciseness. The boundary and interface conditions are
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material a material b

𝑆i

𝒗a, 𝑻a 𝒗b, 𝑻b

𝒆n

Figure 2.2: Interfacing region of two materials.

needed to describe waves confined within a structure, which will be studied

in Chap. 3.

Interface conditions

In order to obtain the interface conditions, the equations (2.1) can be balanced

over a cut-out volume that includes a portion of both materials. After apply-

ing Gauß’s integral theorem and the mean value theorem, one obtains the

continuity conditions [35] as

𝒆n ⋅ 𝑻
a − 𝒆n ⋅ 𝑻

b = −𝒕 , (2.24a)

1

2
[𝒆n𝒗

a + 𝒗a𝒆n − 𝒆n𝒗
b − 𝒗b𝒆n] = −𝒈 , (2.24b)

where the superindices “a” and “b” denote the fields in each of the materials

and the equations hold on the surface of the discontinuity. The right sides rep-

resent surface source densities on 𝑆i. If no sources are present, the equations

can be simplified [35] to

𝒆n ⋅ 𝑻
a − 𝒆n ⋅ 𝑻

b = 𝟎 , (2.25a)

𝒗a − 𝒗b = 𝟎 , (2.25b)

i.e., the normal traction and the particle velocity must be continuous across

the interface. For causal fields, (2.25b) can also be expressed in terms of the

particle displacement [35] as

𝒖a − 𝒖b = 0 . (2.26)

Boundary conditions

A special case of interface conditions is obtained when one of the materials

does not support an elastodynamic field, i.e., when it is infinitely compliant
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2.1 Elastodynamic field in time-space domain

or infinitely dense. These cases are referred to as perfectly soft and perfectly

rigid boundary conditions [35]. The former imposes

𝒆n ⋅ 𝑻 = 𝟎 , (2.27a)

1

2
[𝒆n𝒗 + 𝒗𝒆n] = −𝒈 , (2.27b)

while the second results in the conditions

𝒆n ⋅ 𝑻 = −𝒕 , (2.28a)

𝒗 = 𝟎 . (2.28b)

In contrast to the interface conditions, the boundary conditions are power-

less conditions, meaning that the power flux through the boundary 𝑆i van-

ishes. They are important because they are necessary to describe closed finite

domains. Finally, we remark that the sources in (2.27b) and (2.28a) are not

allowed to be zero, as this would immediately imply that the field is zero

everywhere [35].

Interface between solid and fluid media

We will be interested in the boundary between solid and fluid media. The

sourceless interface equations in (2.25) then reduce to [35]

𝒆n ⋅ 𝑻
a + 𝑝b𝒆n = 𝟎 , (2.29a)

𝒆n ⋅ 𝒖
a − 𝒆n ⋅ 𝒖

b = 𝟎 , (2.29b)

where we have rewritten the second equation in terms of displacements. The

change in sign for 𝑝b in (2.29a) is because the hydrostatic stress state in the

fluid results in the stress 𝑻b = −𝑝b𝑰. It should be remarked that the traction

𝒆n ⋅ 𝑻
a is not generally normal to the surface 𝑆i. Condition (2.29a) is, however,

demanding that this must be the case at the boundary to a fluid domain.

Additionally, instead of demanding the continuity of the displacement vectors,

(2.29b) requires only the normal component to be continuous across the solid-

fluid boundary.
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2 Elastodynamic field theory

2.2 Elastodynamic field in frequency-wave vector domain

The elastodynamic field has so far been introduced and discussed in the

physical 𝒙-𝑡-domain. In the following, we will transition to the easier to deal

with𝜔-𝒌-domain, where𝜔 ∈ ℝ and 𝒌 ∈ ℂ3 denote the angular frequency and

the wave vector, respectively.

2.2.1 Fourier transforms

The relations 𝜔 ↔ 𝑡 and 𝒌 ↔ 𝒙 are given by Fourier transforms. It is con-

venient to use a different sign convention in the exponent of the temporal

Fourier transform than for the spatial Fourier transform [35]. Using i = √−1,

we define the temporal Fourier transform of 𝑢(𝒙, 𝑡) and its inverse as

𝑢(𝒙, 𝜔) = ℱ𝑡𝑢(𝒙, 𝑡)
def
= ∫

∞

−∞

𝑢(𝒙, 𝑡) ei𝜔𝑡 d𝑡 , (2.30)

𝑢(𝒙, 𝑡) = ℱ−1
𝑡 𝑢(𝒙, 𝜔) =

1

2𝜋
∫
∞

−∞

𝑢(𝒙, 𝜔) e−i𝜔𝑡 d𝜔 , (2.31)

respectively. On the other hand, our spatial Fourier transform and its inverse

shall be given by

𝑢(𝒌, 𝑡) = ℱ𝒙𝑢(𝒙, 𝑡)
def
= ∭

∞

−∞

𝑢(𝒙, 𝑡) e−i𝒌⋅𝒙 d3𝒙 , (2.32)

𝑢(𝒙, 𝑡) = ℱ−1𝒙 𝑢(𝒌, 𝑡) =
1

(2𝜋)3
∭

∞

−∞

𝑢(𝒌, 𝑡) ei𝒌⋅𝒙 d3𝒌 , (2.33)

where d3𝒙 = d𝑥d𝑦d𝑧 and d3𝒌 = d𝑘𝑥 d𝑘𝑦 d𝑘𝑧. The integrals (2.30) to

(2.33) do not necessarily exist for all functions 𝑢. Nonetheless, in most cases

of interest, they do exist in a distributional sense, for details refer to [35].

Vectorial quantities are transformed component-wise.

It is possible to concatenate the temporal and spatial transforms. This leads

to the representation

𝑢(𝒙, 𝑡) = ℱ−1
𝑡 ℱ−1𝒙 𝑢(𝒌, 𝜔) =

1

(2𝜋)4
∫
∞

𝑡=−∞

∭
∞

𝒌=−∞

𝑢(𝒌, 𝜔) ei𝒌⋅𝒙 e−i𝜔𝑡 d3𝒌d𝜔

(2.34)

of the physical domain. In the above space-time Fourier synthesis, the function

𝑢(𝒌, 𝜔) is called a plane wave spectrum. The different choice of signs in the

Fourier transforms guarantees that the kernel ei𝒌⋅𝒙 e−i𝜔𝑡 represents a forward
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2.2 Elastodynamic field in frequency-wave vector domain

propagating plane wave (see Sec. 2.3), i.e., the field is represented as a weighted

superposition of such waves.

2.2.2 Governing equations in frequency-wave vector domain

The transition to the 𝜔-𝒌-domain is achieved by considering a spectral plane

wave representation of the particle displacement vector, i.e.,

𝒖(𝒙, 𝑡) = 𝒖(𝒌, 𝜔) ei(𝒌⋅𝒙−𝜔𝑡) , (2.35)

and an analogous ansatz for all other field quantities. Note that the displace-

ment spectrum 𝒖(𝒌,𝜔) is a complex-valued function. It is implicitly assumed

that we are only interested in the real part of (2.35).

Inserting this kind of ansatz into any of the elastodynamic equations and elim-

inating the harmonic factor is equivalent to performing a Fourier transform in

time and space of the equations, as described in the last section. Proceeding

as mentioned, we obtain the

� velocity spectrum from (2.3)

𝒗(𝒌,𝜔) = −i𝜔𝒖(𝒌,𝜔) (2.36)

� strain spectrum from (2.2)

𝑺(𝒌, 𝜔) =
i

2
[𝒌𝒖(𝒌, 𝜔) + 𝒖(𝒌,𝜔)𝒌] (2.37)

� stress spectrum form (2.9) (given that 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘)

𝑻(𝒌,𝜔) =
i

2
𝒄 ∶ [𝒌𝒖(𝒌, 𝜔) + 𝒖(𝒌,𝜔)𝒌] (2.38)

= i𝒄 ∶ 𝒌𝒖(𝒌, 𝜔) = i𝒄 ∶ 𝒖(𝒌, 𝜔)𝒌 . (2.39)

Moreover, transforming the equation of motion given in (2.17) into the 𝜔-𝒌-

domain results in [35]

𝒌 ⋅ 𝒄 ∶ 𝒌𝒖(𝒌, 𝜔) − 𝜌𝜔2𝒖(𝒌,𝜔) = 𝒇(𝒌,𝜔) . (2.40)
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2 Elastodynamic field theory

For isotropic media, the corresponding equation of motion according to (2.18)

reads

𝜇L𝒌 ⋅ 𝒌𝒖(𝒌, 𝜔) + (𝜆L + 𝜇L)𝒌𝒌 ⋅ 𝒖(𝒌, 𝜔) − 𝜌𝜔
2𝒖(𝒌,𝜔) = 𝒇(𝒌,𝜔) . (2.41)

2.2.3 Energy density

The kinetic energy density and the elastic energy density are defined as [35]

𝒦(𝒙, 𝑡) =
1

2
𝜌𝒗(𝒙, 𝑡) ⋅ 𝒗(𝒙, 𝑡) , (2.42a)

ℰ(𝒙, 𝑡) =
1

2
𝑺(𝒙, 𝑡) ∶ 𝒄 ∶ 𝑺(𝒙, 𝑡) , (2.42b)

respectively. The transition to the𝜔-𝒌-domain involves a peculiarity explained

in the following.

Let’s consider the plane wave ansatz from (2.35) for 𝒗 and 𝑺, allowing 𝒌 =

ℜ𝒌 + iℑ𝒌 but 𝜔 ∈ ℝ. As the energy densities are quadratic forms, we need

to form the real part of the complex ansatz (2.35) before inserting into (2.42).

This leads to a time-harmonic term at 2𝜔 and one at −2𝜔, as well as two

constant terms [35]. When averaging in time over one period, the harmonic

terms vanish. The average [40] kinetic and elastic energy densities are then

given by

𝒦(𝒙, 𝒌, 𝜔) =
𝜌

4
𝒗(𝒌, 𝜔) ⋅ 𝒗∗(𝒌, 𝜔) e−2ℑ𝒌⋅𝒙 , (2.43a)

ℰ(𝒙, 𝒌, 𝜔) =
1

4
𝑺(𝒌, 𝜔) ∶ 𝒄 ∶ 𝑺∗(𝒌, 𝜔) e−2ℑ𝒌⋅𝒙 , (2.43b)

respectively. Notice that the spatial dependence does not vanish for ℑ𝒌 ≠ 𝟎.

Moreover, purely in terms of the displacements, the energy densities read

𝒦(𝒙, 𝒌, 𝜔) =
𝜌𝜔2

4
𝒖(𝒌,𝜔) ⋅ 𝒖∗(𝒌, 𝜔) e−2ℑ𝒌⋅𝒙 , (2.44a)

ℰ(𝒙, 𝒌, 𝜔) =
1

4
𝒖∗(𝒌, 𝜔)𝒌∗ ∶ 𝒄 ∶ 𝒌𝒖(𝒌, 𝜔) e−2ℑ𝒌⋅𝒙 , (2.44b)

where the symmetries of 𝒄 have been exploited.

Lastly, the average total stored energy density is given by

ℋ = 𝒦+ ℰ . (2.45)
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2.2 Elastodynamic field in frequency-wave vector domain

2.2.4 Power flux density: the elastodynamic Poynting vector

The power flux density is given by the elastodynamic Poynting vector defined

as [35, 37]

𝒑(𝒙, 𝑡) = −𝒗(𝒙, 𝑡) ⋅ 𝑻(𝒙, 𝑡) . (2.46)

The transition to the 𝜔-𝒌-domain is performed as for the energy densities in

Subsec. 2.2.3. The resulting average power flux density is then given by

𝒑(𝒙, 𝒌, 𝜔) = −
1

4
[𝒗(𝒌, 𝜔) ⋅ 𝑻∗(𝒌, 𝜔) + 𝒗∗(𝒌, 𝜔) ⋅ 𝑻(𝒌, 𝜔)] e−2ℑ𝒌⋅𝒙 (2.47)

= −
1

2
ℜ{𝒗(𝒌, 𝜔) ⋅ 𝑻∗(𝒌, 𝜔)} e−2ℑ𝒌⋅𝒙 (2.48)

In terms of displacements, the above can also be written as

𝒑(𝒙, 𝒌, 𝜔) =
𝜔

2
ℜ{𝒖(𝒌,𝜔) ⋅ 𝒄 ∶ 𝒌∗𝒖∗(𝒌, 𝜔)} e−2ℑ𝒌⋅𝒙 (2.49)

=
𝜔

2
ℜ{𝒄 ⋮ 𝒌∗𝒖∗(𝒌, 𝜔)𝒖(𝒌, 𝜔)} e−2ℑ𝒌⋅𝒙 . (2.50)

(2.51)

2.2.5 Equipartition of energy

It can be shown that for unforced motion in nondissipative media with real-

valued wave vectors 𝒌 = 𝒌∗ (so-called homogeneous waves), the average

kinetic energy density𝒦 is equal to the average elastic energy density ℰ [35][37,

pp. 221]. This property is known as equipartition of energy. It can be used to

avoid the rather complicated computation of the elastic energy density given

in (2.43b). Contraction of the homogeneous equation of motion (2.40) from

the left with 𝒖∗(𝒌, 𝜔) yields

𝒖∗(𝒌, 𝜔)𝒌 ∶ 𝒄 ∶ 𝒌𝒖(𝒌, 𝜔)⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

4ℰ

−𝜌𝜔2𝒖∗(𝒌, 𝜔) ⋅ 𝒖(𝒌, 𝜔)⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

4𝒦

= 0 , (2.52)

which immediately provides the desired result ℰ = 𝒦. Under the mentioned

restrictions, the total energy density ℋ simplifies to

ℋlossless = 2𝒦 =
1

2
𝜌𝜔2𝒖∗(𝒌, 𝜔) ⋅ 𝒖(𝒌, 𝜔) = 2ℰ . (2.53)
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2 Elastodynamic field theory

2.2.6 Complex reciprocity relations

A pair (𝒗(𝒙, 𝑡), 𝑻(𝒙, 𝑡)) solving the elastodynamic fundamental equations (2.8)

is called an elastodynamic state [38]. Several different relations between one

elastodynamic state (𝒗1, 𝑻1) and a second one, which we denote (𝒗2, 𝑻2), can

be derived and are called reciprocity relations [41]. The situation is illustrated

in Fig. 2.3. These relations are important to derive orthogonality relations

between waveguide modes, see Subsec. 3.1.7. Moreover, given that one elasto-

dynamic state is known, these relations can be used to obtain estimates of the

unknown state without explicitly solving the elastodynamic equations again

(see Subsec. 3.1.9).

fundamental

equations (2.8)

𝒇1 𝜌1, 𝒔1

(𝒗1, 𝑻1)

fundamental

equations (2.8)

𝒇2 𝜌2, 𝒔2

(𝒗2, 𝑻2)
reciprocity relation

Figure 2.3: Sketch of reciprocity relations.

The complex elastodynamic reciprocity relation is valid for time-harmonic

fields, i.e., of the form 𝒗(𝒙, 𝑡) = 𝒗(𝒙) e−i𝜔𝑡, etc. The derivation according to

Auld [41] is as follows: (i) write (2.8) for (𝒗1, 𝑻1) and multiply the equations

with (𝒗∗2⋅) and (𝑻∗2 ∶), respectively; (ii) obtain a second similar system of

equations by exchanging the indices and the complex conjugation; and, finally,

(iii) sum all four equations. Under the condition that 𝜌 and 𝒔 are real and

𝑠𝑖𝑗𝑘𝑙 = 𝑠𝑘𝑙𝑖𝑗, i.e., for nondissipative media, the result can be reduced to1,2

∇⋅(−𝒗∗2 ⋅𝑻1−𝒗1 ⋅𝑻
∗
2) = −𝜕𝑡(𝜌𝒗

∗
2 ⋅𝒗1+𝑻

∗
2 ∶ 𝒔 ∶ 𝑻1)+𝒗

∗
2 ⋅ 𝒇1+𝒗1 ⋅ 𝒇

∗
2 . (2.54)

Note that, in general, the above two states may be of different frequencies.

More general reciprocity relations, e.g., for dissipative media, can also be

formulated [41].

1 Here, we assume that the prescribed strain rate 𝒉 = 𝟎. Excitation with volume force densi-

ties 𝒇 are retained for perturbation analysis.

2 We have made use of the fact that if 𝑨 is a symmetric 2nd order tensor, then𝑨 ∶
1

2
(𝑩+𝑩⊤) =

𝑨 ∶ 𝑩. Moreover, ∇ ⋅ (𝒗 ⋅ 𝑻) = 𝒗 ⋅ ∇ ⋅ 𝑻 + 𝑻 ∶ ∇𝒗.
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2.3 Homogeneous and inhomogeneous plane waves

2.3 Homogeneous and inhomogeneous planewaves

We turn to analyze the unforced motion of an unbounded elastic medium,

i.e., we set 𝒇 = 𝟎 in (2.40). In Sec. 2.2, we already discussed the governing

equations for solutions of the form

𝒖(𝒙, 𝑡) = 𝒖(𝒌, 𝜔) ei(𝒌⋅𝒙−𝜔𝑡) (2.55a)

= 𝒖(𝒌,𝜔) e−ℑ𝒌⋅𝒙 ei(ℜ𝒌⋅𝒙−𝜔𝑡) , (2.55b)

which, for a single fixed 𝒌 and 𝜔, are called plane harmonic bulk waves [35].

Above 𝒌 = 𝑘𝒆k = ℜ𝒌 + iℑ𝒌 denotes the complex wave vector with magni-

tude 𝑘 = √𝒌 ⋅ 𝒌∗ and complex unit directional vector 𝒆k. The vector’s real

part ℜ𝒌 = ℜ𝑘𝒆p is called the propagation vector. From (2.55b), we see that

the field amplitude varies exponentially along the vector ℑ𝒌 = ℑ𝑘𝒆a, rea-

son for which it is termed the attenuation vector. In contrast to 𝒆k, the unit

directional vectors 𝒆p and 𝒆a are real-valued.

Important properties of plane waves are due to their phase 𝜑, which refers to

the argument

𝜑(𝒙, 𝑡)
def
= ℜ𝒌 ⋅ 𝒙 − 𝜔𝑡 (2.56)

of the complex exponential in (2.55b). Its level sets are all points 𝒙p with the

same phase and these sets are called phase fronts [35]. The vectors 𝒆t that are

tangential to the phase front are characterized by a stationary phase 𝜑 along

𝒆t and, hence, the derivative in direction 𝒆t fulfills

∇𝜑 ⋅ 𝒆t = ℜ𝒌 ⋅ 𝒆t
!
= 0 . (2.57)

From the above result, we conclude that the tangential vectors are orthogonal

to the propagation vector ℜ𝒌 everywhere. Therefore, the phase fronts are

planes orthogonal toℜ𝒌 spanned by the two linearly independent solutions

𝒆t1 and 𝒆t2. This is the reason why solutions proportional to ei𝒌⋅𝒙 are called

plane waves.

Two simplified examples of plane waves are visualized in Fig. 2.4, where all

quantities have been normalized. The examples are in two-dimensional space

𝒙 = [𝑥, 𝑦]⊤ and the displacement 𝒖(𝒌,𝜔) has been reduced to the scalar

𝑢(𝒌, 𝜔) = 1. The phase fronts of the 2D plane waves reduce to lines with

𝒆t = 𝒆𝑦.

Depending on the relation between the propagation vector ℜ𝒌 and the atten-

uation vector ℑ𝒌, two kind of plane waves can be distinguished [35, 42]:
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ℜ𝒌

𝑥𝑦

d
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p
la
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m
en

t
𝑢

(a) homogeneous plane wave: attenuation

vector vanishes.

ℜ𝒌
ℑ𝒌

𝑥𝑦

d
is
p
la
ce
m
en

t
𝑢

(b) inomogeneous plane wave: attenuation

along the phase fronts.

Figure 2.4: Visualization of plane waves with scalar displacement 𝑢 in the two-dimensional

𝑥-𝑦-space. The wave fields are shown at 𝑡 = 0 in a nondissipative medium.

Homogeneous planewaves: When the propagation vectorℜ𝒌 and the atten-

uation vector ℑ𝒌 are parallel, i.e., 𝒆p = 𝒆a, the plane waves are said to

be homogeneous. The attenuation ℑ𝑘 of the wave is then solely due to

dissipation of energy in the material [35]. In nondissipative materials,

we have ℑ𝑘 = 0, 𝒌 = ℜ𝒌 and 𝒆k = 𝒆p. The latter case is shown in

Fig. 2.4a.

Inhomogeneous planewaves: In this case, the propagation vector ℜ𝒌 and

the attenuation vector ℑ𝒌 are not parallel. ℑ𝒌may then be decomposed

into a component along the propagation direction 𝒆p and an orthogonal

component. While the first component is due to dissipation of energy,

the second is not. As will be shown, in nondissipative materials ℑ𝒌 is

always orthogonal toℜ𝒌 – this is the case displayed in Fig. 2.4b.

The phase fronts of harmonic plane waves move with time, as the following

analysis shows [13]. Any point 𝒙p on a given phase front remains on this phase

front by tracing a path 𝒙p(𝑡) determined by the invariance of the phase with

respect to time, i.e.,

d

d𝑡
𝜑(𝒙p(𝑡), 𝑡) = ℜ𝒌 ⋅

d𝒙p(𝑡)

d𝑡
− 𝜔

!
= 0 . (2.58)

As the phase fronts are infinite planes, they can only move perpendicularly,

i.e., in direction of ℜ𝒌 = ℜ𝑘𝒆p. This component of the velocity vector
d𝒙p

d𝑡
is

given by

𝑐p
def
= 𝒆p ⋅

d𝒙p(𝑡)

d𝑡
=
𝜔

ℜ𝑘
, (2.59)
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2.3 Homogeneous and inhomogeneous plane waves

which is called the phase velocity [35]. Additionally, it makes sense to define

the phase velocity vector [35] to be directed in the same direction as the

propagation vector ℜ𝒌, i.e.,

𝒄p
def
= 𝑐p𝒆p =

𝜔

ℜ𝑘
𝒆p . (2.60)

It should be remarked that plane waves are physically not realizable because

of their infinite extend and energy. They are, nonetheless, interesting because

they can be used to represent physical solution according to (2.34).

2.3.1 Dispersion relations

The discussed properties of harmonic plane waves are solely a consequence

of the ansatz (2.55) and independent of the underlying physics. The elas-

todynamic field equations are consulted next to find out more about plane

waves.

In (2.55), we have postulated elastodynamic solutions with two parameters,

namely 𝜔 and 𝒌. Not all combinations thereof form valid elastodynamic

solutions. The dependence between 𝜔 and 𝒌 is described by the so-called

dispersion relations [35, 37, 38]. They are obtained by inspecting the homoge-

neous equation of motion (2.40), which reads

[𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜌𝜔2] ⋅ 𝒖(𝒌, 𝜔) = 𝟎 . (2.61)

For the given 𝜌-𝒄-material, we need to find the values 𝒌, 𝜔 and 𝒖 that fulfill

the above equation and, thus, arise as physical solutions. We factorize 𝒖 =

𝑢(𝒌, 𝜔)𝒆u(𝒌, 𝜔) in the above equation and divide the resulting equation by

the arbitrary spectral amplitude 𝑢 as well as the mass density 𝜌 to obtain

[
1

𝜌
𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜔2𝑰] ⋅ 𝒆u(𝒌, 𝜔) = 𝟎 . (2.62)

The above equation is called the Kelvin-Christoffel equation [35, 37]. As we are

not interested in the trivial solution 𝒆u = 𝟎, we need to find the values 𝒌 and

𝜔 for which the wave tensor [35]

𝑾(𝒌,𝜔) =
1

𝜌
𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜔2𝑰 (2.63)
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becomes singular, i.e., we have to find the eigenvalues 𝜔2(𝒌) of the second

order Kelvin-Christoffel tensor [35, 37]

𝑫 =
1

𝜌
𝒌 ⋅ 𝒄 ⋅ 𝒌 . (2.64)

Instead of prescribing 𝒌, it would be possible to prescribe 𝒆k and 𝜔 and solve

for 𝑘. Even a third option is to prescribe 𝒆k and solve for the eigenvalues 𝑐2
def
=

(𝜔/𝑘)2 determined by

[
1

𝜌
𝒆k ⋅ 𝒄 ⋅ 𝒆k − 𝑐

2𝑰] ⋅ 𝒆u(𝒌, 𝜔) = 𝟎 . (2.65)

The latter form has the advantage that 𝑐 is frequency-independent given that

𝒄 and 𝜌 are independent of frequency, i.e., in nondissipative materials [35].

Note that in the case of homogeneous plane waves (real 𝒆k), 𝑐 is the phase

velocity – not for inhomogeneous waves, however.

In addition to the eigenvalues, also the eigenvectors 𝒆u can be obtained from

(2.62) or (2.65). These unit directional vectors are called polarization vec-

tors [35] and describe the direction of particle motion for each of the plane

wave solutions. They might be complex, in which case they also specify a

relative phase.

The solutions of the above eigenvalue problems (EVPs) are the modes of the

unbound solid medium. As such, they form a complete orthogonal basis

capable of expanding any arbitrary wave field with a plane wave spectrum [35]

– this works even in bounded domains and is the starting point for several

methods for computing guided wave propagation (see Subsec. 4.1.1). So far, we

have only sketched the solution procedure. In order to find explicit solutions,

the specific structure of the stiffness tensor 𝒄 needs to be considered.

Planewaves in anisotropic nondissipative media

In nondissipative media, the stiffness tensor 𝒄 and the mass density 𝜌 are

real-valued and independent of frequency. As a consequence, the Kelvin-

Christoffel tensor in (2.65) and, hence, its eigenvalues 𝑐 are independent of

frequency [35]. This property is referred to as nondispersive wave propagation

and is equivalent to demanding 𝒌(𝜔) to be a linear relation. Otherwise,

the wave propagation is said to be dispersive [35, 37, 38]. We remark that

only for unbounded nondissipative media, one obtains nondispersive wave

propagation. Waves confined within a structure are in general dispersive

even if the medium is nondissipative, as we will see in Chap. 3. The latter
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2.3 Homogeneous and inhomogeneous plane waves

might be called geometric dispersion to distinguish it from dispersion due to

dissipation.

We see in (2.65) that in general, the Kelvin-Christoffel tensor and, there-

fore, the plane wave solutions depend on the prescribed directional vector 𝒆k.

Remember that 𝒆k =
ℜ𝒌

𝑘
+ i

ℑ𝒌

𝑘
might be complex, as it prescribes both a nor-

malized phase propagation and a normalized attenuation. As a consequence,

the resulting wave propagation properties (e.g., wave velocities) depend on

both the propagation direction and the wave’s inhomogeneity [35].

In order to find and discuss specific solutions to the EVP (2.62), additional

assumptions on the material need to be made. In this thesis, isotropic nondis-

sipative media are of central importance and will be discussed in the following.

Planewaves in isotropic nondissipativemedia

We use the isotropic stiffness tensor given in (2.13) and insert into (2.63) to

obtain the isotropic wave tensor [35]

𝑾 =
𝜇L

𝜌
𝒌 ⋅ 𝒌𝑰 +

𝜆L + 𝜇L

𝜌
𝒌𝒌 − 𝜔2𝑰 . (2.66)

The eigenvalues are computed with the characteristic equation [35] given by

det𝑾 = (
𝜇L𝒌 ⋅ 𝒌 − 𝜌𝜔

2

𝜆L + 𝜇L
)

2

(
𝜇L𝒌 ⋅ 𝒌 − 𝜌𝜔

2

𝜆L + 𝜇L
+ 𝒌 ⋅ 𝒌) = 0 . (2.67)

The three roots define the dispersion relations [35] and are given by

longitudinal: 𝒌 ⋅ 𝒌 =
𝜌

𝜆L + 2𝜇L
𝜔2 def

= 𝜅2l ∈ ℝ
+ , (2.68a)

transverse: 𝒌 ⋅ 𝒌 =
𝜌

𝜇L
𝜔2 def

= 𝜅2t ∈ ℝ
+ . (2.68b)

The two equations (2.68a) and (2.68b) can be summarized by

𝒌 ⋅ 𝒌 = 𝜅2l/t ∈ ℝ
+ , (2.69)

Note that the values 𝜅l and 𝜅t, are fixed by the medium in which the wave

propagates and the frequency. As only the scalar 𝒌 ⋅ 𝒌 is involved in the

dispersion relations, the solutions are independent of propagation direction

of the wave. This is a direct consequence of the structure of the isotropic

stiffness tensor given in (2.13). While the solution 𝜅l is a single eigenvalue,
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2 Elastodynamic field theory

the solution 𝜅t is a double eigenvalue – which is a peculiarity of isotropic

media [35].

Homogeneous planewaves

One possibility to fulfill requirement (2.69) is to set𝒌 = 𝜅l/t𝒆p, i.e., considering

homogeneous plane waves [35, 38]. According to (2.59), the two solutions

(2.68a) and (2.68b) then lead to the phase velocities of homogeneous plane

waves in isotropic media, namely

longitudinal: 𝑐l
def
=

𝜔

𝜅l
= √

𝜆L + 2𝜇L

𝜌
, (2.70a)

transverse: 𝑐t
def
=

𝜔

𝜅t
= √

𝜇L

𝜌
. (2.70b)

The above solutions are named according to the corresponding particle motion

of the waves, which is determined by the eigenvector 𝒆u. For the eigenvalue 𝜅2l
of (2.68a), we find that𝒆u = 𝒆p, i.e., the particle motion is in the same direction

as the phase propagation [35]. For this reason, it is called a longitudinal wave,

sometimes also primary wave or pressure wave. On the other hand, the two

eigenvectors corresponding to the double eigenvalue 𝜅2t of (2.68b) are required

to be orthogonal to 𝒆p, but are otherwise arbitrary [35]. The waves are, hence,

denoted as transverse waves – sometime also secondary waves or shear waves.

Inhomogeneous planewaves

We remark that the wave vector 𝒌 = ℜ𝒌 + iℑ𝒌 does not need to be real.

Writing out the scalar product in (2.69) in terms of real and imaginary parts

requires that

𝒌 ⋅ 𝒌 = |ℜ𝒌|2 − |ℑ𝒌|2 + 2iℜ𝒌 ⋅ ℑ𝒌 = 𝜅2l/t ∈ ℝ
+ . (2.71)

The above can also be satisfied with a complex wave vector 𝒌i fulfilling

ℜ𝒌i ⋅ ℑ𝒌i = 0 . (2.72)

These kind of solutions are referred to as inhomogeneous plane waves [35,

38, 42]. According to (2.72), the propagation vectorℜ𝒌i and the attenuation

vector ℑ𝒌i are required to be orthogonal in nondissipative isotropic media.

Their phase fronts are attenuated alongℑ𝒌i, as sketched in Fig. 2.4b. While the
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2.3 Homogeneous and inhomogeneous plane waves

existence of inhomogeneous waves was much debated [42], it is now known

that they often emerge naturally at the interface between two media [35, 42].

They also happen to be essential to understand wave propagation in leaky

waveguides – as will become clear in Sec. 3.2.

The phase velocity of inhomogeneous waves is different to that of homoge-

neous waves [35, 43]. The real part of the wave vector 𝒌i is given by ℜ𝒌i =

(𝒌i + 𝒌i∗)/2. Its phase velocity is then

𝑐i
l/t

def
=

𝜔

|ℜ𝒌i|
=

𝜔

√ℜ𝒌i ⋅ ℜ𝒌i
=

2𝜔

√𝒌i ⋅ 𝒌i + 𝒌i∗ ⋅ 𝒌i∗ + 2𝒌i ⋅ 𝒌i∗
(2.73)

As 𝒌i fulfills the dispersion relation (2.69), it is known that 𝒌i∗ ⋅ 𝒌i∗ = 𝒌i ⋅ 𝒌i =

𝜅2l/t. Forming the phase velocity ratio of inhomogeneous and homogeneous

waves gives [35]

𝑐i
l/t

𝑐l/t
= √

2

1 + (𝒌i ⋅ 𝒌i∗)/𝜅2l/t

. (2.74)

Note that 𝒌i ⋅ 𝒌i∗ = |ℜ𝒌i|2 + |ℑ𝒌i|2 and because ℜ𝒌i ⟂ ℑ𝒌i, the product

𝒌i ⋅ 𝒌i = |ℜ𝒌i|2 − |ℑ𝒌i|2 = 𝜅2l/t. With these observations we may write

𝒌i ⋅ 𝒌i∗ = 𝜅2l/t+2|ℑ𝒌
i|2. Inserting into the previous equation finally yields [35]

𝑐i
l/t = √

1

1 + |ℑ𝒌i|2/𝜅2l/t

𝑐l/t . (2.75)

As a consequence, the phase velocity of inhomogeneous plane waves depends

on its attenuation and is always lower than that of homogeneous ones.

2.3.2 Energy velocity

Waves usually transport energy. The speed and direction of energy transport

is called the energy velocity 𝒄e [35, 37, 38]. It is given by the ratio of average

power flux density 𝒑 to the average total stored energy density ℋ:

𝒄e
def
=

𝒑

ℋ
. (2.76)

37



2 Elastodynamic field theory

Using (2.44) and (2.50) the energy velocity can be stated purely in terms of

the displacements as

𝒄e =

𝜔

2
ℜ{𝒄 ⋮ 𝒌∗𝒖∗(𝒌, 𝜔)𝒖(𝒌, 𝜔)}

𝜌𝜔2

4
𝒖(𝒌,𝜔) ⋅ 𝒖∗(𝒌, 𝜔) +

1

4
𝒖∗(𝒌, 𝜔)𝒌∗ ∶ 𝒄 ∶ 𝒌𝒖(𝒌, 𝜔)

. (2.77)

For the special case of homogeneous plane waves in nondissipative media

we can exploit equipartition of energy given in (2.53) and simplify the above

to [35]

𝒄e =
𝒄 ⋮ 𝒌𝒖∗(𝒌, 𝜔)𝒖(𝒌, 𝜔)

𝜌𝜔𝒖∗(𝒌, 𝜔) ⋅ 𝒖(𝒌, 𝜔)
=

1

𝜌𝜔
𝒄 ⋮ 𝒌𝒆u𝒆u . (2.78)

For isotropic media 𝒄e = 𝒄p, but this does usually not hold for anisotropic

materials [35, 37]. This means that in the latter case, energy propagates in

a different direction and with different velocity as compared to the phase

fronts [35, 37]. This will become visible only when inspecting a wave beam of

finite width, as the phase fronts are then not orthogonal to the beam itself.

For dispersive homogeneous plane wave propagation, another useful formula

to compute the energy velocity can be obtained by considering the∇𝒌-gradient

of the equation of motion (2.61), where ∇𝒌 denotes the gradient with respect

to the wavenumber components. The derivation is given in Langenberg et

al. [35] and will be sketched in the following. Considering that ∇𝒌𝒌 = 𝑰 and

∇𝒌(𝒌 ⋅ 𝒄 ⋅ 𝒌) = 2𝒄 ⋅ 𝒌, we find from (2.61) that

∇𝒌 {[𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜔
2(𝒌)𝜌𝑰] ⋅ 𝒖} (2.79)

= ∇𝒌 [𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜔
2(𝒌)𝜌𝑰] ⋅ 𝒖 + ∇𝒌𝒖 ⋅ [𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜔

2(𝒌)𝜌𝑰]
⊤

(2.80)

= 2 [𝒄 ⋅ 𝒌 − 𝜔(𝒌)∇𝒌𝜔(𝒌)𝜌𝑰] ⋅ 𝒖 + ∇𝒌𝒖 ⋅ [𝒌 ⋅ 𝒄 ⋅ 𝒌 − 𝜔
2(𝒌)𝜌𝑰] = 𝟎 . (2.81)

In the latter equation, the transposition can be omitted because 𝒌 ⋅ 𝒄 ⋅ 𝒌 −

𝜔2(𝒌)𝜌𝑰 is symmetric. Next, the result is contracted from the right with 𝒖∗.

Considering that𝒌∗ = 𝒌, the last term vanishes as 𝒌 and 𝒖 satisfy the equation

of motion (2.61). This gives

𝒄 ⋮ 𝒌𝒖𝒖∗ − 𝜔(𝒌)∇𝒌𝜔(𝒌)𝜌𝒖 ⋅ 𝒖
∗ = 𝟎 . (2.82)

Forming the complex conjugate of the above equation and solving for ∇𝒌𝜔(𝒌)

finally yields

∇𝒌𝜔(𝒌) =
𝒄 ⋮ 𝒌𝒖∗𝒖

𝜌𝜔(𝒌)𝒖∗ ⋅ 𝒖
= 𝒄e . (2.83)
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2.3 Homogeneous and inhomogeneous plane waves

Comparing to (2.78), we see that ∇𝒌𝜔(𝒌) gives the energy velocity of homoge-

neous plain waves in nondissipative media. We conclude by remarking that

the energy velocity can be determined from the dispersion relation𝜔(𝒌) alone

without knowledge of the wave’s displacement field 𝒖.

2.3.3 Group velocity

So far, the concepts were developed for plane harmonic waves, i.e., at fixed 𝒌

and𝜔. Ultrasonic measurements are often based on the time of flight of a wave

packet of finite extend by referring to the maximum of its envelope. We are,

therefore, interested in knowing the propagation velocity of the envelope [35,

37, 38]. The below derivation is performed according to Langenberg et al. [35].

Consider a wave packet 𝒖(𝒙, 𝑡) with plane wave spectrum 𝒖(𝒌,𝜔) which is

continuous in the wave vector 𝒌 and – according to (2.34) – can be synthesized

by

𝒖(𝒙, 𝑡) =
1

(2𝜋)3
∭

∞

−∞

𝒖(𝒌,𝜔) ei𝒌⋅𝒙−i𝜔(𝒌)𝑡 d3𝒌 . (2.84)

Let’s assume that 𝜔(𝒌) changes slowly with 𝒌, such that the truncated Taylor

series expansion

𝜔(𝒌) ≈ 𝜔(𝒌0) + (𝒌 − 𝒌0) ⋅ ∇𝒌𝜔(𝒌)|𝒌=𝒌0
(2.85)

is a good approximation. Defining the group velocity of the wave packet as

𝒄g(𝒌0) ∶= ∇𝒌𝜔(𝒌)|𝒌=𝒌0
(2.86)

and inserting (2.85) and (2.86) into (2.84), we obtain

𝒖(𝒙, 𝑡) =
1

(2𝜋)3
∭

∞

−∞

𝒖(𝒌,𝜔) e
i𝒌⋅𝒙−i[𝜔(𝒌0)+(𝒌−𝒌0)⋅𝒄g(𝒌0)]𝑡 d3𝒌

=
1

(2𝜋)3
∭

∞

−∞

𝒖(𝒌,𝜔) ei(𝒌−𝒌0)⋅𝒙−i(𝒌−𝒌0)⋅𝒄g(𝒌0)𝑡 d3𝒌
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑨𝒌0(𝒙−𝒄g(𝒌0)𝑡)

ei𝒌0⋅𝒙−i𝜔(𝒌0)𝑡 .

(2.87)

After integration, the argument of the envelope𝑨𝒌0 is of the form (𝒌−𝒌0)(𝒙−

𝒄g(𝒌0)𝑡). Hence, the defined group velocity corresponds – in first order approx-

imation – to the propagation speed and direction of the wave packet’s envelope

with carrier wave vector 𝒌0 and carrier frequency 𝜔(𝒌0). The retardation of
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2 Elastodynamic field theory

phases of the wave packet, on the other hand, is given by the phase velocity

𝒄p = 𝜔(𝒌0)/ℜ𝑘0 𝒆p, as should be expected.

Comparing (2.86) to (2.83), we conclude that for homogeneous waves in

nondissipative media, the group velocity is the same as the energy velocity,

see also Refs. [35, 38, 40, 44, 45]:

𝒄g = 𝒄e (for 𝒌, 𝒄 and 𝜌 real). (2.88)

This is intuitively clear because energy cannot travel passed the nodes of the

wave’s envelope [38]. In contrast to the energy velocity, which is a dynamical

definition, the concept of group velocity is a purely kinematic definition.

Alternative representations of the group velocity may be found in terms of the

phase velocity [38]. Here, we derive these expressions in full vectorial form.

Considering that 𝜔(𝒌) = 𝒄p(𝒌) ⋅ 𝒌, one can write the group velocity as

𝒄g = 𝒄p + ∇𝒌𝒄p ⋅ 𝒌 . (2.89)

Moreover, for 𝒄p = 𝒄p(𝜔(𝒌)) and real 𝒌, we may also write

𝒄g = 𝒄p +
𝜔

𝑐p
𝒄g

𝜕𝒄p

𝜕𝜔
⋅ 𝒆p , (2.90)

which will reduce to

𝒄g = 𝒄p (1 −
𝜔

𝑐p

𝜕𝑐p

𝜕𝜔
)

−1

(2.91)

if 𝒄p(𝜔) = 𝑐p(𝜔)𝒆p does not change direction with frequency, i.e., for isotropic

media having collinear group and phase velocities.

Remember that 𝒄p is independent of frequency for nondispersive wave propa-

gation. From the above equations, we may conclude that the phase velocity

and group velocity are identical in this case.

2.4 Concluding remarks

The elastodynamic field theory was reviewed in this chapter. The presented

concepts are essential to describe and understand mechanical waveguides,

which are the core of this monograph. The governing equations of waveguides

will be obtained from Navier’s equation in combination with appropriate

boundary and/or interface conditions (Sec. 2.1). Thereby, the analysis will

be performed in the frequency-wavenumber domain (Sec. 2.2). The main
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difference between wave propagation in unbounded media and in a waveguide

is that the latter is always dispersive, even for isotropic media. Consequently,

the concepts of dispersion relation, phase velocity, group velocity and energy

velocity are indispensable (Sec. 2.3). By presenting them in this chapter, we

emphasize that these concepts are not exclusive to guided waves, but are rather

very fundamental.

41





3 Guided and quasi-guided waves

The theory of elastodynamic wave propagation confined within a structure is

presented in the following. Thereby, we concentrate on plates, the simplest

form of waveguides, as they are appropriate to describe thin structures like

a pipe’s wall. Two conceptually and mathematically very different kind of

waveguides will be introduced: closed and open waveguides. While energy

is perfectly confined within the former, it may flow across the waveguide’s

boundary in the latter case. Open waveguides are of practical interest in

UFM because elastic waves inside the pipe wall leak into the pipe’s interior

in the form of acoustic waves. Conversely, an incident acoustic wave excites

mechanical waves in the pipe wall. This is the mechanism by which ultrasonic

waves are emitted and received into/from the pipe’s interior.

The chapter is divided into two sections: closed waveguides in Sec. 3.1 and open

waveguides in Sec. 3.2. Closed waveguides are well understood and Sec 3.1

gives a literature review on the topic. This is different for open waveguides:

since they represent a non-conservative system, they are physically much more

intricate. While Sec. 3.2 references existing literature, it mostly represents an

adaptation and extension to the author’s contributions [P3] and [P5].

3.1 Guided waves in plates

ℎguided wave
𝑘𝑥

plate

vacuum

vacuum

𝒆𝑥

𝒆𝑦

𝒆𝑧

Figure 3.1: plate geometry.

Let’s consider the geometry depicted in Fig. 3.1. The homogeneous plate is

unbounded in the 𝑥-𝑧-plane but has finite thickness ℎ along 𝒆𝑦. The half-

spaces above and below the plate are vacuum, i.e., no wave propagation is

possible. For energy to be confined within the plate’s interior, wave prop-

agation must take place purely in the 𝑥-𝑧-plane. We shall consider plane

waves inside the plate. This implies displacements of the form 𝒖(𝒙, 𝑡) =

𝒖(𝑦, 𝑘𝑥, 𝑘𝑧, 𝜔) ei(𝑘𝑥𝑥+𝑘𝑧𝑧−𝜔𝑡), which corresponds to a Fourier transform in 𝑥,

𝑧 and 𝑡, while remaining in the physical domain 𝑦. This kind of ansatz makes

sense because the formulated problem exhibits translational invariance along
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3 Guided and quasi-guided waves

𝑥, 𝑧 and 𝑡 and, therefore, solutions that are harmonic in these coordinates are

expected to exist [46]. Furthermore, the coordinate system is positioned such

that the phases propagate purely in 𝒆𝑥, i.e., we restrict attention to the waves

with 𝑘𝑧 = 0. This reduces the guided wave ansatz to

𝒖(𝒙, 𝑡) = 𝒖(𝑦, 𝑘𝑥, 𝜔) ei(𝑘𝑥𝑥−𝜔𝑡) . (3.1)

Note that this ansatz implies a plain strain state [1, 38] because the displace-

ment field is clearly independent of the 𝑧-coordinate (𝜕𝑧𝒖 = 𝟎).

3.1.1 Waveguide problem formulation

The field in the plate needs to satisfy the unforced elastodynamic wave equa-

tion (2.17) as well as the traction free BC (2.27a) at the plate’s faces. The latter

are located at 𝑦 = ±ℎ/2 with normal vectors given by 𝒆n = ±𝒆𝑦. Together

with the guided wave ansatz (3.1), the named equations form the guided wave

problem. In order to account for the ansatz, we introduce the mixed “spatial

derivative operator”

𝒢 ∶= i𝑘𝑥𝒆𝑥 + 𝜕𝑦𝒆𝑦 + 0𝒆𝑧 . (3.2)

The stress tensor is then given by 𝑻(𝑦, 𝑘𝑥, 𝜔) = 𝒄 ∶ 𝒢𝒖(𝑦, 𝑘𝑥, 𝜔). Correspond-

ingly, the guided wave problem for the free plate reads

𝑾(𝑘𝑥,𝜔)

⏜⎴⎴⎴⎴⏞⎴⎴⎴⎴⏜[𝒢 ⋅ 𝒄 ⋅ 𝒢 + 𝜌𝜔2𝑰] ⋅ 𝒖(𝑦, 𝑘𝑥, 𝜔) = 𝟎 , (3.3a)

[𝒆𝑦 ⋅ 𝒄 ⋅ 𝒢]⏝⎵⎵⏟⎵⎵⏝
𝑩(𝑘𝑥,𝜔)

⋅ 𝒖(𝑦, 𝑘𝑥, 𝜔)|𝑦=±ℎ/2
!
= 𝟎 . (3.3b)

Writing out the components of 𝒢, performing the contractions and grouping

in terms of i𝑘𝑥, finally results in

𝑾(𝑘𝑥,𝜔)

⏜⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏜[(i𝑘𝑥)
2𝑳2 + i𝑘𝑥𝜕𝑦𝑳1 + 𝜕

2
𝑦𝑳0 + 𝜌𝜔

2𝑰] ⋅ 𝒖(𝑦, 𝑘𝑥, 𝜔) = 𝟎 , (3.4a)

[i𝑘𝑥𝑩1 + 𝜕𝑦𝑩0]⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
𝑩(𝑘𝑥,𝜔)

⋅ 𝒖(𝑦, 𝑘𝑥, 𝜔)|𝑦=±ℎ/2
!
= 𝟎 , (3.4b)

where the constant 2nd order stiffness tensors 𝑳𝑛 are given by

𝑳2 = 𝑐𝑥𝑗𝑘𝑥𝒆𝑗𝒆𝑘 , 𝑳1 = (𝑐𝑥𝑗𝑘𝑦 + 𝑐𝑦𝑗𝑘𝑥)𝒆𝑗𝒆𝑘 , 𝑳0 = 𝑐𝑦𝑗𝑘𝑦𝒆𝑗𝒆𝑘 , (3.5)
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and the constant traction operators 𝑩𝑛 by

𝑩1 = 𝑐𝑦𝑗𝑘𝑥𝒆𝑗𝒆𝑘 , 𝑩0 = 𝑐𝑦𝑗𝑘𝑦𝒆𝑗𝒆𝑘 . (3.6)

As we seek nontrivial solutions for 𝒖 satisfying (3.4), it is necessary to find

the values (𝑘𝑥, 𝜔) for which the wave operator 𝑾(𝑘𝑥, 𝜔) subject to 𝑩(𝑘𝑥, 𝜔)

becomes singular. It is feasible to prescribe either𝜔or𝑘𝑥 in (3.4a) and consider

the other parameter as eigenvalue to be solved for. However, if inhomogeneous

(evanescent) waves are to be considered, it is more convenient to prescribe

the real-valued angular frequency 𝜔 and solve for the complex values of the

wavenumber 𝑘𝑥. Proceeding in this way results in a frequency-dependent

quadratic EVP for i𝑘𝑥(𝜔), as can be seen in (3.4) [47].

The above derivation shows that the guided wave problem is analogous to the

plane bulk wave problem in Subsec. 2.3.1, with the difference that the problem

remains continuous in the through-thickness coordinate 𝑦. As such, it repre-

sents a differential EVP on the one-dimensional domain 𝑦 ∈ [−ℎ/2, ℎ/2]. This

kind of problems is known in the literature as Sturm-Liouville problems [48–

57] and is well studied in the context of functional analysis.

3.1.2 Dispersion curves of an anisotropic plate

A Matlab toolbox called Elastodynamic Acoustic Toolbox (EDAT), see Sec. 4.4,

was developed in the course of this thesis that numerically solves a discrete

and normalized version of the guided wave problem, for details refer to Chap-

ter 4. As an example, the computed frequency-dependent wavenumbers

𝑘𝑥(𝑓) for a transversely isotropic (i.e., hexagonal symmetry) fibre reinforced

graphite/epoxy plate with fibers in direction of wave propagation (material

data is given in Appendix A) are plotted in Fig. 3.2a and Fig. 3.2b. Moreover, the

corresponding phase velocities 𝑐p = 𝜔/ℜ𝑘𝑥 are shown in Fig. 3.2c (compare

to [58]).

The frequency-dependent curves in Fig. 3.2 are collectively referred to as

dispersion curves. Each single curve corresponds to one mode or wave. Note

that the dispersion curves live in the three-dimensional space [ℜ𝑘𝑥, ℑ𝑘𝑥, 𝑓] [41,

47], i.e., the wavenumber spectrum is in general complex valued. Real valued

solutions are marked as “propagating” in the shown dispersion diagrams, while

complex valued ones are denoted as “nonpropagating” (see next section). Even

if difficult to see in Fig. 3.2a, the curves of propagating modes are connected

to the nonpropagating ones. With this continuation of dispersion curves into

the complex plane, all modes extend down to zero frequency [41].
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Figure 3.2: Dispersion curves of a transversely isotropic fibre reinforced graphite/epoxy plate.

We prefer to plot the dispersion curves in the wavenumber-thickness and

frequency-thickness products because in this representation, they are inde-

pendent of the plate’s thickness itself. This can be seen when considering

the guided wave problem on the normalized/stretched coordinate 𝜂 = 𝑦/ℎ

with 𝜕𝜂 = ℎ𝜕𝑦. The problem given by (3.4a) and (3.4b) – scaled by ℎ2 and ℎ,

respectively – then yields

PDE: [(i𝑘𝑥ℎ)
2𝑳2 + i𝑘𝑥ℎ𝜕𝜂𝑳1 + 𝜕

2
𝜂𝑳0 + 𝜌(𝜔ℎ)

2𝑰] ⋅ 𝒖(𝜂, 𝑘𝑥ℎ, 𝜔ℎ) = 𝟎 ,

(3.7a)

BCs: [i𝑘𝑥ℎ𝑩1 + 𝜕𝜂𝑩0] ⋅ 𝒖(𝜂, 𝑘𝑥ℎ, 𝜔ℎ)|𝜂=±1/2
!
= 𝟎 . (3.7b)

Note that the differential operator 𝜕𝜂 is dimensionless and operates on the

unit thickness. Therewith, the above problem depends only on the products

𝑘𝑥ℎ (wavenumber-thickness) and 𝜔ℎ (angular frequency-thickness) and not
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3.1 Guided waves in plates

on the thickness ℎ as such. We conclude that a change in the plate’s thickness

simply leads to accordingly scaled wavenumber and frequency [59].

3.1.3 Classification of modes

The waveguide modes separate into several independent sets with unique

properties. This will be discussed in detail in the following.

Propagating and nonpropagating modes

Purely real wavenumbers exist and these solutions are called propagating

modes. On the other hand, imaginary and complex wavenumbers do also

exist. It can be shown that these modes do not propagate energy [41, 60],

i.e., their power flux (and hence energy velocity) is identically zero. For this

reason, they are termed nonpropagating modes [41, 60]. At some points in the

dispersion diagram they meet with the propagating modes, which also exhibit

vanishing power flux at this single point. These so-called zero-group-velocity

(ZGV) modes represent local vibrations of the plate and are used for material

characterization and nondestructive testing [61]. Note that fluid loading of

the plate has the effect that propagating and nonpropagating waves merge into

one non-separable physical entity called quasi-guided waves (QGWs), which

will be treated in detail in Sec. 3.2. We will focus the remaining discussion in

this section – which is concerned with free plates – on propagating modes.

Mode families

The multitude of modes seen in Fig. 3.2 can often be split into decoupled

subsets, which are referred to as mode families [62]. As they are independent

of each other, they can be computed and analyzed separately, leading to an

according reduction in complexity. Moreover, the dispersion curves of modes

belonging to the same family cannot cross. Instead, eigenvalue veering/repul-

sion [63, 64] can be observed when two modes in the same family get close to

each other. From a computational point of view, this can be exploited to avoid

tedious and unreliable mode tracing. Instead, the wavenumbers can simply

be sorted by magnitude in order to match solutions at different frequencies to

the same mode.

The mode families emerge due to two properties:

� coupling or decoupling between in-plane (𝑥-𝑦-plane) and out-of-plane

motions (𝑧-direction) and

� the parity of the eigenfunctions or lack thereof.
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3 Guided and quasi-guided waves

If the wave motions decouple, the in-plane motions [𝑢𝑥, 𝑢𝑦, 0]
⊤ lead to the

so-called Lamb waves [41, 65], while the out-of-plane motions [0, 0, 𝑢𝑧]
⊤ lead

to shear-horizontal (SH) waves [41]. Their eigenfunctions 𝑢𝑖(𝑦) might exhibit

symmetric (S) or anti-symmetric (A) parity, splitting the former families again

into two independent subsets.

The number and type of mode families that exist in a plane waveguide depends

on

� the existence of a plane of symmetry in the geometry and

� the anisotropy and orientation of the material.

An in-depth analysis was performed by Hernando Quintanilla et al. [62]

and reveals that the anisotropy of the material leads to exactly five possible

categories of plane and homogeneous waveguides (plates), each with a unique

set of mode families summarized in Tab. 3.1. The denotation of the waveguide

class seen in the table was introduced by the mentioned authors and refers to

the applicable crystal class with fewest symmetries. For instance, O
S/A
D stands

for orthorhombic crystal class with decoupling (•D) of Lamb and SH waves,

each with symmetric/anti-symmetric parity (•S/A). The classification is for

a homogeneous single-layer plate. Breaking the waveguide’s symmetry with

respect to the mid-plane (𝑦 = 0), e.g., due to inhomogeneity of the material

or fluid loading, does naturally also break the parity of the solutions, not,

however, the decoupling of Lamb and SH polarizations.

Table 3.1: Summary of possible splitting into mode families according to [62]. Empty fields

indicate no decoupling or no parity, respectively. For a full list of material configurations

corresponding to each class refer to [62].

denotation TC MD M
S/A
C Tet∗D O

S/A
D

decoupling Lamb SH Lamb SH Lamb SH

parity A S A S A S A S

Let’s first inspect the conditions under which Lamb waves decouple from

SH waves, i.e., we are interested in knowing when motions of 𝑢𝑥 and 𝑢𝑦 are

independent of 𝑢𝑧. This corresponds to waveguides of either class •D or class

•C, see Tab. 3.1. Note that the coupling is due to the stiffness operators 𝑳𝑖
and 𝑩𝑖 in (3.4). We derive conditions on the Cartesian components 𝑐𝑖𝑗𝑘𝑙
of the stiffness tensor for which decoupled equations are obtained. Greek

indices shall denote free indices for the 𝑥 and 𝑦 components – omitting the 𝑧-

component – i.e., 𝛼, 𝛽 ∈ {𝑥, 𝑦}. The components of the stiffness contribution
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3.1 Guided waves in plates

in (3.4a) can then be split into a contribution due to 𝑢𝛽 and one due to 𝑢𝑧
according to

[(i𝑘𝑥)
2𝑐𝑥𝑗𝛽𝑥 + i𝑘𝑥𝜕𝑦(𝑐𝑥𝑗𝛽𝑦 + 𝑐𝑦𝑗𝛽𝑦) + 𝜕

2
𝑦𝑐𝑦𝑗𝛽𝑦] 𝑢𝛽

+ [(i𝑘𝑥)
2𝑐𝑥𝑗𝑧𝑥 + i𝑘𝑥𝜕𝑦(𝑐𝑥𝑗𝑧𝑦 + 𝑐𝑦𝑗𝑧𝑦) + 𝜕

2
𝑦𝑐𝑦𝑗𝑧𝑦] 𝑢𝑧 . (3.8)

The three equations indexed by 𝑗will decouple when reference to𝑢𝑧 disappears

for 𝑗 = 𝛼, i.e., 𝑐𝑥𝛼𝑧𝑥 = 𝑐𝑥𝛼𝑧𝑦 = 𝑐𝑦𝛼𝑧𝑥 = 𝑐𝑦𝛼𝑧𝑦 = 0, and when reference to 𝑢𝛽
disappears for 𝑗 = 𝑧, i.e., 𝑐𝑥𝑧𝛽𝑥 = 𝑐𝑥𝑧𝛽𝑦 = 𝑐𝑦𝑧𝛽𝑥 = 𝑐𝑦𝑧𝛽𝑦 = 0. In a similar

way, redundant conditions are obtained from (3.4b). To summarize concisely,

Lamb and SH waves decouple when

𝑐𝛼𝛽𝑧𝛾 = 0 and 𝑐𝛼𝑧𝛽𝛾 = 0 for 𝛼, 𝛽, 𝛾 ∈ {𝑥, 𝑦} . (3.9)

In this case, the 𝛼 ∈ {𝑥, 𝑦} and 𝑧 components of the guided wave problem

given in (3.4) can be treated separately, leading to a 2×2-system for Lamb

waves and a scalar equation for SH waves, respectively. Each of them, having

the same structure as before.

Next, let’s inspect the segregation of waves according to the parity of their

eigenfunctions 𝒖(𝑦) = [𝑢𝑥(𝑦), 𝑢𝑦(𝑦)]
⊤, which yields the waveguide classes

without super-index, super-index S/A or super-index ∗ in Tab. 3.1. When the

functions exhibit a definite parity, the modes segregate into the following two

families:

symmetric (S): 𝑢𝑥 is even, i.e., 𝑢𝑥(𝑦) = 𝑢
∗
𝑥(−𝑦), and

𝑢𝑦 is odd, i.e., 𝑢𝑦(𝑦) = −𝑢
∗
𝑦(−𝑦).

anti-symmetric (A): 𝑢𝑥 is odd and 𝑢𝑦 is even.

Our toolbox classifies the waves into A and S by computing the scalar product

of the eigenfunctions 𝒖𝑛(𝑦)with the test functions 𝑓e(𝑦) = 1 and 𝑓o(𝑦) = 2𝑦

and exploits the fact that even and odd functions are orthogonal. This proce-

dure has the advantage that it results in a measure on “how close to symmetric

or anti-symmetric” the modes are, i.e., it can be seen as a generalization to

waves that do not exhibit perfect parity. This can be of interest for guided

wave transducer selection [44, 66] when the parity is only “slightly altered”,

e.g., light single-sided fluid loading.

Instead of an a-posteriori classification, it is also possible to compute only the

symmetric or anti-symmetric solutions of (3.4) by

� using only even or odd interpolation functions in the numerical approx-

imation [48] or
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3 Guided and quasi-guided waves

� modeling only half the plate’s cross-section, i.e., 𝑦 ∈ [0, ℎ], and imposing

appropriate symmetry or anti-symmetry conditions at the center point

𝑦 = 0 [58].

The implemented Matlab toolbox uses a full-tensor notation and is capable

of computing waveguide problems of any crystal symmetry/anisotropy. This

monograph focuses on the O
S/A
D class, which includes isotropic materials as

well as the example given in Fig. 3.2. As we are mostly interested in fluid-

coupled plates (Sec. 3.2), decoupling of Lamb and SH waves is of particular

interest because SH waves – having no displacements normal to the plate’s

surface – do not couple to the fluid medium (see Subsec. 2.1.5).

3.1.4 Dispersion curves of an isotropic plate

Let’s discuss guided waves in a free, homogeneous and isotropic plate in more

detail. It corresponds to the O
S/A
D class, i.e., motions decouple into Lamb and

SH polarization and each of them into symmetric and anti-symmetric families.

The equations are obtained by inserting the isotropic stiffness tensor (2.13) into

the guided wave problem (3.4). Additionally, we explicitly split the equations

according to their polarization using the two-component displacement vector

�̄� = 𝑢𝛼𝒆𝛼 with 𝛼 ∈ {𝑥, 𝑦}, as well as the reduced identity tensor �̄� and �̄�-

operator, both consisting only of the 𝑥- and 𝑦-components1. The equations of

in-plane and out-of-plane plain strain motions then read

[(𝜆L + 𝜇L)�̄��̄� + 𝜇L�̄� ⋅ �̄��̄� + 𝜌𝜔
2�̄�] ⋅�̄� = 𝟎 , (3.10a)

[𝜇L�̄� ⋅ �̄� + 𝜌𝜔
2] 𝑢𝑧 = 0 , (3.10b)

respectively.

Shear-horizontal waves

The guided shear-horizontal waves are pure out-of-plane displacements de-

scribed by (3.10b) together with traction free boundary conditions (BCs).

Writing out in terms of i𝑘𝑥 and 𝜕𝑦, the waveguide problem reduces to the

following scalar waveguide problem:

[𝜇L(i𝑘𝑥)
2 + 𝜇L𝜕

2
𝑦 + 𝜌𝜔

2]𝑢𝑧(𝑦, 𝑘𝑥, 𝜔) = 0 , (3.11a)

𝜇L𝜕𝑦𝑢𝑧(𝑦, 𝑘𝑥, 𝜔)|𝑦=±ℎ/2 = 0 . (3.11b)

1 In the following, •̄ shall not denote a mean, but reduced tensors.
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3.1 Guided waves in plates

As an example, the dispersion curves of shear-horizontal waves in an isotropic

brass plate (material data in Appendix A) have been computed and are dis-

played in Fig. 3.3.
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Figure 3.3: Dispersion curves of shear-horizontal (SH) modes in a brass plate.

Lambwaves

We turn to analyze wave motions in the 𝑥-𝑦-plane described by (3.10a). Here-
inafter, the over-bars denoting two-component tensors will be omitted, as
only reduced tensors are involved. The structure of the guided wave equation
is identical to the one of the anisotropic plate given in (3.4). However, the
reduced stiffness tensors 𝑳2 = 𝑐𝑥𝛼𝛽𝑥𝒆𝛼𝒆𝛽, 𝑳1 = (𝑐𝑥𝛼𝛽𝑦 + 𝑐𝑦𝛼𝛽𝑥)𝒆𝛼𝒆𝛽 and
𝑳0 = 𝑐𝑦𝛼𝛽𝑦𝒆𝛼𝒆𝛽 can now be stated explicitly in terms of the Lamé parameters
in matrix representation as

[𝑳2] = [
𝜆L + 2𝜇L 0

0 𝜇L

] , [𝑳1] = [
0 𝜆L + 𝜇L

𝜆L + 𝜇L 0
] , [𝑳0] = [

𝜇L 0

0 𝜆L + 2𝜇L

] . (3.12)

Similarly, the traction operators 𝑩1 = 𝑐𝑦𝛼𝛽𝑥𝒆𝛼𝒆𝛽 and 𝑩0 = 𝑐𝑦𝛼𝛽𝑦𝒆𝛼𝒆𝛽 for
the isotropic plate can be written in matrix form as

[𝑩1] = [
0 𝜇L

𝜆L 0
] , [𝑩0] = [

𝜇L 0

0 𝜆L + 2𝜇L

] . (3.13)

The resulting dispersion curves of Lamb waves in a free brass plate (material

parameters given in Appendix A) are shown in Fig. 3.4. The propagating modes

have been split into symmetric and antisymmetric modes. Only three of the

nonpropagating branches are included because waves with ℑ𝑘𝑥ℎ > 8 have

been cropped. This is also the reason why the uppermost of these branches

stops at approx. (3, 3.1 MHz mm), i.e., this is merely an artifact of visualization.

The propagating Lamb modes labeled A0 and S0 are denoted as fundamental
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Figure 3.4: Dispersion curves of Lamb modes in a brass plate.

modes because they exist over the whole frequency range. With increasing

frequency, more propagating modes are encountered. Those frequency points

are called cutoff frequencies. Note that the discussed details also apply to

Fig. 3.2, where no classification into SH/Lamb nor symmetric/anti-symmetric

waves has been performed although the plate is also of class O
S/A
D .

3.1.5 Wave field of Lambmodes

The wave field of propagating Lamb modes will be inspected more closely

in the following. The displacement eigenfunctions 𝒖𝑛(𝑦) describe the wave

field of the modes [59]. They are depicted exemplarily for the fundamental

modes in Fig. 3.5. Thereby, each mode is normalized to its maximum dis-

placement magnitude. As the components 𝑢𝑥(𝑦) and 𝑢𝑦(𝑦) are always 90°

out of phase [44], they are shown at the phase where they become maximal,

respectively. The even and odd parity of the displacement functions discussed

in Subsec. 3.1.3 can clearly be observed in the plots.

The displacements can be extruded to the 𝑥-𝑦-plane using the ansatz (3.1),

obtaining a more intuitive visualization. This has been done for the funda-

mental modes and is presented in Fig. 3.6. It illustrates the “flexural” nature

of anti-symmetric waves as well as the “compressional” nature of the symmet-

ric ones. Higher modes exhibit increasing number of nodal points in their

displacement structure, but behave otherwise similar [59].
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Figure 3.5: Displacement structure of the fundamental modes. The two components are shown

90° out of phase at their respective maximum.
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Figure 3.6: Displacement field of the fundamental modes.

3.1.6 Power flux considerations

As the energy is confined within the waveguide, the modal solutions carry

power purely in 𝑥-direction. The average power flux density 𝒑 according to

(2.48) can be integrated over the waveguide’s cross section, i.e., along 𝑦, in

order to obtain the net average power flux of the waves:

𝑃 = ∫
ℎ/2

−ℎ/2

𝒑 ⋅ 𝒆𝑥 d𝑦 . (3.14)

The above expression is strictly zero for all nonpropagating waves, but nonzero

for the propagating ones.

Energy and group velocity of guided waves

The energy velocity according to Subsec. 2.3.2 describes the speed and direc-

tion with which waves carry energy. This concept can be adapted to guided
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3 Guided and quasi-guided waves

waves [41], where we may now consider their total average energy flux 𝑃 along

the plate given in (3.14) and the total average stored energy 𝐻 = ∫
ℎ/2

−ℎ/2
ℋd𝑦,

whereℋ is the time-averaged energy density from (2.45) or (2.53). The energy

velocity of guided waves is then given by [40, 41, 44]

𝑐e
def
=

𝑃

𝐻
. (3.15)

As the power flux of the guided waves is purely in 𝑥-direction, it is sufficient

to specify the energy velocity as a scalar.

The energy velocities of propagating Lamb modes in the fibre reinforced

graphite/epoxy plate according to (3.15) are plotted in Fig. 3.7a, while the one

for the brass plate are shown in Fig. 3.7b. In general, the energy velocity of

modes can be negative even if ℜ𝑘𝑥 > 0. Such waves propagate energy in

opposite direction as compared to the phases and are, hence, called backward

waves [67–69]. Such a wave – labeled S2b in the figures – is supported by the

brass plate, displaying negative energy velocities in Fig. 3.7b.
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Figure 3.7: Energy velocity of Lamb modes

The concept of group velocity, defined for plane waves in Subsec. 2.3.3, is

equally applicable to guided waves [41] and is especially appropriate for propa-

gating modes, as they have purely real wavenumbers [44]. The group velocity

of propagating guided waves is defined as

𝑐g
def
=

𝜕𝜔

𝜕ℜ𝑘𝑥
. (3.16)
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3.1 Guided waves in plates

This means that for propagating modes, it can be identified as the slope in

the 𝜔-ℜ𝑘𝑥-diagram, e.g., in Fig. 3.4a. For nondissipative and closed wave-

guides, it can be shown that the group- and energy velocities are identical [40,

44]. However, energy velocity is the more general concept, as it extends to

dissipative waveguides [44].

3.1.7 Orthogonality relations betweenmodes

Guided waves in plates – albeit they are eigensolutions of a non-Hermitian

system2 – form a complete orthogonal set, i.e., they can be used to uniquely

expand arbitrary fields in the plate. Orthogonality is shown and discussed

in Ref. [41, 70–72]. Their completeness is usually assumed [73], but recent

work presents a proof [74]. Accordingly, guided waves form the natural basis

to describe wave phenomena in plates – analogous to what plane waves are

for unbounded media. The field expansion requires an orthogonality rela-

tion, which is then used to project the arbitrary field onto each of the modal

solutions, yielding the desired expansion coefficients.

An orthogonality condition for the waveguide solutions can be derived from

the reciprocity relation given in (2.54). We provide the derivation according

to Auld [41]. For this end, both considered elastodynamic states are modal

solutions obtained from (3.4) at one given frequency, i.e.,

𝒗1 = 𝒗𝑚(𝑦) ei(𝑘𝑥𝑚𝑥−𝜔𝑡) , 𝑻1 = 𝑻𝑚(𝑦) ei(𝑘𝑥𝑚𝑥−𝜔𝑡) , and (3.17)

𝒗2 = 𝒗𝑛(𝑦) ei(𝑘𝑥𝑛𝑥−𝜔𝑡) , 𝑻2 = 𝑻𝑛(𝑦) ei(𝑘𝑥𝑛𝑥−𝜔𝑡) . (3.18)

The term in (2.54) with the time derivative vanishes in this case because the

products 𝒗∗2 ⋅ 𝒗1, etc., are time-independent. Considering that 𝒇1 = 𝒇2 = 0,

and inserting into the reciprocity relation (2.54) yields

i(𝑘∗𝑥𝑛−𝑘𝑥𝑚)𝒆𝑥 ⋅(−𝒗
∗
𝑛 ⋅ 𝑻𝑚 − 𝒗𝑚 ⋅ 𝑻

∗
𝑛) = 𝒆𝑦𝜕𝑦 ⋅(−𝒗

∗
𝑛 ⋅ 𝑻𝑚 − 𝒗𝑚 ⋅ 𝑻

∗
𝑛) , (3.19)

where summation over repeated free indices is not implied. Furthermore,

we integrate the above equation over the cross section of the waveguide,

i.e., along 𝑦. Then, using the divergence theorem (fundamental theorem

of calculus), the integral of the 𝜕𝑦-term reduces to the boundary term 𝒆𝑦 ⋅

(−𝒗∗𝑛 ⋅ 𝑻𝑚 − 𝒗𝑚 ⋅ 𝑻
∗
𝑛)|

ℎ/2

−ℎ/2
. With these considerations, the integral of (3.19)

reads

i(𝑘∗𝑥𝑛 − 𝑘𝑥𝑚)4𝑃𝑚𝑛 = 𝒆𝑦 ⋅ (−𝒗
∗
𝑛 ⋅ 𝑻𝑚 − 𝒗𝑚 ⋅ 𝑻

∗
𝑛)|

ℎ/2

−ℎ/2
, (3.20)

2 Remember that the wavenumbers (eigenvalues) are complex valued [56].
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with

𝑃𝑚𝑛

def
=

1

4
∫
ℎ/2

−ℎ/2

(−𝒗∗𝑛 ⋅ 𝑻𝑚 − 𝒗𝑚 ⋅ 𝑻
∗
𝑛) ⋅ 𝒆𝑥 d𝑦 . (3.21)

Moreover, for the free waveguide modes, we know that 𝒆𝑦 ⋅ 𝑻𝑛 = 𝒆𝑦 ⋅ 𝑻𝑚 = 𝟎,

which means that the boundary term in (3.20) vanishes. This yields the

orthogonality relation

𝑃𝑚𝑛 = 0 for 𝑘𝑥𝑚 ≠ 𝑘
∗
𝑥𝑛 . (3.22)

We conclude that, at given frequency, an eigensolution with propagation con-

stant 𝑘𝑥𝑛 is orthogonal to all other eigensolutions for which the propagation

constant 𝑘𝑥𝑚 ≠ 𝑘
∗
𝑥𝑛. In particular, this means that such solutions are mutually

independent. 𝑃𝑚𝑛 can be interpreted as the cross power flow between mode𝑚

and mode 𝑛. When𝑚 = 𝑛, the term 𝑃𝑚𝑛 reduces to the mode’s total average

power flux, i.e., 𝑃𝑛𝑛 = 𝑃 according to (3.14). In a similar manner, orthogonality

relations between solutions at different frequencies but constant wavenumber

can be obtained [72].

The deduced orthogonality relation is used to describe (i) how guided waves

are excited by tractions applied on the plate’s surfaces (next subsection);

(ii) how small changes in/at the waveguide alter the solutions (Subsec. 3.1.9);

and (iii) how an ultrasonic beam is reflected from the pipe wall (Subsec. 6.3.2).

3.1.8 Excitation of guided waves

It is of interest to determine how waveguide modes will be excited when

tractions are prescribed at the boundary of the guide or when body forces

act in its interior. This will be used in Sec. 5.1 to describe the response of

waveguide transducers and in Sec. 6.3 to describe the incidence and reflection

of acoustic waves from a plate.

The configuration is presented in Fig. 3.8. Tractions 𝒕(𝑥, 𝑦) are prescribed at

the plate’s surfaces over the segment 𝑥 ∈ [0, 𝑤]. The region of excitation may

also contain an applied force density distribution 𝒇(𝑥, 𝑦) in its interior. As a

result, guided waves propagate away to both sides of the source region, but we

restrict attention to the right-propagating ones as the others are analogous.

We seek the amplitudes 𝐴𝑛(𝑥) at axial position 𝑥 of each of the propagating

modes with 𝑐e > 0. Note that sufficiently far away from the sources, the field

is fully determined by the propagating waves because nonpropagating modes

are evanescent.
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free plate

region
ℎ

𝒕(𝑥, −ℎ/2)

𝒕(𝑥, ℎ/2)

𝐴𝑛

body forces 𝒇(𝑥, 𝑦)

𝒆𝑥

𝒆𝑦

Figure 3.8: Plate with prescribed tractions and applied body forces over the region 𝑥 ∈ [0,𝑤].

Guided waves are excited in the free plate region to the right.

The general idea on how the excitation of guided waves can be modeled is

laid out first. The prescribed forces and tractions lead to motions inside the

waveguide, which can be regarded as a superposition of modal motions, as

seen in the previous section. The interaction of the imposed forces/tractions

with the waveguide motions results in mechanical power that is injected into

the waveguide. The injected power needs to be found in the power flux of

all modes. Due to their orthogonality property, it is also possible to uniquely

determine the allocation of power in each of the modes.

The reciprocity relation given in (2.54) can be used together with the mode

orthogonality property in (3.22) to determine the excitation of modes. The

theory is presented according to Auld [41] and is also found in more detail

in Kino [70]. Recall that all fields vary as e−i𝜔𝑡. The elastodynamic state 1

shall be an arbitrarily prescribed state (𝒗(𝑥, 𝑦), 𝑻(𝑥, 𝑦)), while state 2 is the

field of the 𝑛th mode, i.e., (𝒗𝑛(𝑦), 𝑻𝑛(𝑦)) ei𝑘𝑥𝑛𝑥, for which 𝒇2 = 𝟎. Inserting

into (2.54), integrating over the waveguide cross section 𝑦 ∈ [−ℎ/2, ℎ/2] and

dropping the exponential term yields

(𝜕𝑥 − i𝑘∗𝑥𝑛)∫
ℎ/2

−ℎ/2

(−𝒗∗𝑛 ⋅ 𝑻 − 𝒗 ⋅ 𝑻
∗
𝑛) ⋅ 𝒆𝑥 d𝑦

+ 𝒆𝑦 ⋅ ∫
ℎ/2

−ℎ/2

𝜕𝑦(−𝒗
∗
𝑛 ⋅ 𝑻 − 𝒗 ⋅ 𝑻

∗
𝑛)d𝑦 = ∫

ℎ/2

−ℎ/2

𝒗∗𝑛 ⋅ 𝒇d𝑦 , (3.23)

where no summation over the index 𝑛 is implied.

The first term needs further treatment. For this, we assume that the arbitrary

state 1 is expandable in terms of the modal solutions as

𝒗 =∑

𝑚

𝑎𝑚(𝑥)𝒗𝑚(𝑦) , 𝑻 =∑

𝑚

𝑎𝑚(𝑥)𝑻𝑚(𝑦) , (3.24)
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3 Guided and quasi-guided waves

Thereby, the scalar weighting functions 𝑎𝑚(𝑥) denote the axial field variations

of mode 𝑚 that are to be determined. The above expansions together with

definition (3.21) further simplify (3.23) to

(𝜕𝑥 − i𝑘∗𝑥𝑛)4∑

𝑚

𝑎𝑚(𝑥)𝑃𝑚𝑛 = 𝑓s𝑛(𝑥) + 𝑓v𝑛(𝑥) , (3.25)

where

𝑓s𝑛(𝑥)
def
= 𝒆𝑦 ⋅ [𝒗

∗
𝑛 ⋅ 𝑻]

𝑦=ℎ/2

𝑦=−ℎ/2
= [𝒗∗𝑛 ⋅ 𝒕]𝑦=ℎ/2 + [𝒗

∗
𝑛 ⋅ 𝒕]𝑦=−ℎ/2 , and (3.26)

𝑓v𝑛(𝑥)
def
= ∫

ℎ/2

−ℎ/2

𝒗∗𝑛 ⋅ 𝒇d𝑦 (3.27)

denote the surface sources and the volume sources, respectively. The expres-

sion for 𝑓s𝑛 was obtained by integrating the second term in (3.23) and taking

into account the stress free BCs of the waveguide modes, i.e., 𝒆𝑦 ⋅ 𝑻𝑛|𝑦=±ℎ/2 =

0.

According to the orthogonality relation given in (3.22), the sum ∑
𝑚 𝑎𝑚(𝑥)𝑃𝑚𝑛

is nonzero only for one value of 𝑚. For propagating modes, this is the case

when 𝑚 = 𝑛, in which case we also have 𝑘∗𝑥𝑛 = 𝑘𝑥𝑛 and 𝑃𝑛𝑛 is given by 𝑃𝑛
in (3.14). With this in mind, the equation governing the variations 𝑎𝑛(𝑥) of

propagating modes finally reduces to [41]

4𝑃𝑛(𝜕𝑥 − i𝑘𝑥𝑛)𝑎𝑛(𝑥) = 𝑓s𝑛(𝑥) + 𝑓v𝑛(𝑥) . (3.28)

The modal field is harmonic in 𝑥, therefore, the axial variations must be of the

form 𝑎𝑛(𝑥) = 𝐴𝑛(𝑥) ei𝑘𝑥𝑛𝑥, where 𝐴𝑛(𝑥) denotes the modal envelope/ampli-

tude. The above equation is solved by multiplying with e−i𝑘𝑥𝑛𝑥, grouping the

left hand side terms as 𝜕𝑥(𝑎𝑛(𝑥) e−i𝑘𝑥𝑛𝑥) = 𝜕𝑥𝐴𝑛(𝑥) and integrating. This

yields the modal envelope [70]

𝐴𝑛(𝑥) =
1

4𝑃𝑛
∫
𝑥

−∞

[𝑓s𝑛(𝜉) + 𝑓v𝑛(𝜉)] e−i𝑘𝑥𝑛𝜉 d𝜉 . (3.29)

Special interest might lie on the free plate region without sources, when the

mode’s envelope has settled to its final amplitude. In this case, the upper

integral limit can be extended to +∞ because 𝑓s𝑛 = 𝑓v𝑛 = 0 outside [0, 𝑤].
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3.1 Guided waves in plates

It is then identified as the spatial Fourier transform defined in (2.32). The

resulting constant amplitude in the free plate region can be expressed as

𝐴𝑛 =
1

4𝑃𝑛
[ℱ𝑥𝑓s𝑛(𝑥) + ℱ𝑥𝑓v𝑛(𝑥)]|𝑘𝑥=𝑘𝑥𝑛

, for 𝑥 > 𝑤 . (3.30)

3.1.9 Perturbation theory

Given a waveguide solution, perturbation calculations can be used to approxi-

mate the solution under slightly changed waveguide conditions, e.g., changed

boundary conditions or material parameters. The great advantage is that an

analytical expression relating the perturbed and the unperturbed fields is

obtained. Auld [41] derives both interior as well as boundary perturbation

formulas for waveguides and this is presented in the following. We will make

use of the resulting perturbation formulas in Chap. 7 for sensitivity analysis

of waveguide parameters.

Boundary perturbations are obtained using the reciprocity relation (2.54).

Solution “2” is taken to be the known solution, which is required to be a

nondissipative and closed waveguide solution with real wavenumber 𝑘𝑥 [41].

On the other hand, solution “1” shall represent the perturbed solution with

wavenumber 𝑘′𝑥. Note that the perturbation might be lossy, leading to complex

valued 𝑘′𝑥. With this, the two fields are of the form 𝒗2 = 𝒗(𝑦) ei𝑘𝑥𝑥, 𝒗1 =

𝒗′(𝑦) ei𝑘′𝑥𝑥, etc., where the time dependence e−i𝜔𝑡 has been dropped. The

procedure is the same as for derivation of the mode orthogonality relation

(except that here 𝑘′𝑥 is not modal and 𝑘′𝑥 ≈ 𝑘𝑥) and the result may be taken

from (3.20), yielding the boundary perturbation formula [41]:

Δ𝑘𝑥 = 𝑘𝑥 − 𝑘
′
𝑥 ≈

−i𝒆𝑦 ⋅ (−𝒗
∗ ⋅ 𝑻′ − 𝒗′ ⋅ 𝑻∗)|

ℎ/2

−ℎ/2

4𝑃
, (3.31)

where the factor 𝑃𝑚𝑛 given in (3.21) has been approximated by 𝑃𝑚𝑛 ≈ 𝑃𝑛𝑛 = 𝑃

assuming a small perturbation. In order to obtain the change in wavenumber,

the perturbed field 𝒗′, 𝑻′ needs to be approximated according to the current

situation, e.g., fluid loading, a thin layer overlay, etc.

Interior perturbations can be performed by first deriving a reciprocity relation

similar to (2.54) but where solution “2” corresponds to nondissipative material

parameter𝜌, 𝒄, while solution “1” corresponds to different (possibly dissipative)

constitutive parameters denoted as 𝜌′, 𝒄′. The resulting relation includes the

parameter differences Δ𝜌 = 𝜌′−𝜌 and Δ𝒄 = 𝒄′−𝒄. For details refer to Ref. [41].
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3 Guided and quasi-guided waves

With the same steps and field ansatz as for the above boundary perturbation,

the following interior perturbation formula is obtained [41]:

Δ𝑘𝑥 = 𝑘𝑥 − 𝑘
′
𝑥 ≈

𝜔

4𝑃
∫
ℎ/2

−ℎ/2

Δ𝜌𝒗∗ ⋅ 𝒗′ − 𝑺∗ ∶ Δ𝒄 ∶ 𝑺′ d𝑦 . (3.32)

Note that, thereby, the boundary terms have vanished in virtue of the traction-

free boundary conditions satisfied by both the perturbed and unperturbed

fields.

3.2 Quasi-guided waves in fluid-coupled plates

We now turn to analyze the propagation of waves in an open plate, i.e., energy is

allowed to flow across the plate’s boundaries. This is achieved by replacing one

or both vacuum half-spaces in Fig. 3.1 by a material that supports mechanical

wave propagation. We will consider a perfectly inviscid fluid for this purpose.

An elastodynamic wave propagating in the plate may then radiate an acoustic

wave into the fluid, thereby transporting energy away from the plate. The

reverse process is also feasible. Moreover, perfectly guided waves that do not

radiate energy also exist. Overall, we will collectively refer to these waves as

quasi-guided waves (QGWs).

A novel representation, solution procedure and analysis for QGWs is devel-

oped in Subsecs. 3.2.2 to 3.2.5 as well as 3.2.8. Most of these discussions have

been presented by the author in [P3] and [P5]. The dispersive behavior and

wave field of leaky waves is known in the literature, but we revisit the topics

in more detail in the remaining subsections. Therewith, we hope to achieve a

mostly complete presentation of the current state of knowledge on this open

research topic.

This section restricts to Lamb-polarized waves in isotropic media. According

to (2.29) the SH waves – exhibiting displacements purely tangential to the

plate’s faces – do not interact with the fluid. Consequently, the SH modes of

the plate will remain unchanged when it is loaded by a fluid, see Subsec. 3.1.4.

3.2.1 Models for the fluid-coupled plate

Before deriving the QGW model, some remarks on how it relates to other

models are in order. In principle, there are two substantially different kind of

models for a plate that is in contact with a fluid half-space: (a) a full plate-fluid

model and (b) an open plate model. Additionally, a mixture between the
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3.2 Quasi-guided waves in fluid-coupled plates

two is obtained when truncating the fluid half-space at a finite distance from

the plate. These three models and their advantages and disadvantages are

discussed in the following.

Remember the guided wave ansatz (3.1). All models consider wave fields of

this form, i.e., harmonic in time as e−i𝜔𝑡 and in the 𝑥-coordinate as ei𝑘𝑥𝑥. As

the solutions are given analytically in 𝑡 and 𝑥, only the 𝑦-coordinate remains as

computational domain. The models differ in the treatment of this coordinate,

which is unbounded due to the infinite extend of the fluid.

Full plate-fluid model

top boundary

plate

fluid

𝒆𝑥

𝒆𝑦

Figure 3.9: Plate with adjacent fluid half-space.

The plate and the fluid are described “as are”, i.e., on the unbounded domain

𝑦 ∈ [−ℎ/2,∞). The geometry is sketched in Fig. 3.9. This approach is neces-

sary for a full description of the mechanics that includes the plate as well as

its exterior, i.e., the fluid [50, 51, 75, 76]. For this reason, the corresponding

eigensolutions, i.e., the solutions factorized in space and time [76], have been

referred to as modes of the universe [76–78]. When considering nondissi-

pative media, the model will be energy conserving because energy cannot

“escape” the universe. Consequently, the eigensolutions form an orthonormal

basis [76] in the conventional sense. This can be considered a major advantage

of the model.

The spectrum, i.e., the possible values of 𝑘𝑥 in the complex plane, consists of

discrete and continuous parts [50, 75]. The discrete solutions are called trapped

modes and describe waves that propagate along the plate without radiating

into the half-space. The continuous parts are called radiation modes [50] and

are required to describe exchange of energy between the plate and the fluid

domain. The radiation modes are, hence, analogous to the plane bulk waves

in an unbounded homogeneous medium (see Sec. 2.3), where we have two

continua, one for the longitudinal waves and one for the transverse waves.
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3 Guided and quasi-guided waves

The radiation modes are different in that they include the inhomogeneity of

the plate-fluid system.

To sum up, this model represents the overall wave field by a discrete sum of

trapped modes plus an integral over the continuum of the radiation modes:

𝒖(𝑥, 𝑦, 𝜔) = ∑ trapped modes + ∫ radiation modes [75]. The main disadvan-

tage of the model is that the continuum is difficult to handle mathematically

and intricate to interpret physically. Moreover, if analytical solutions in the

exterior domain are not known a-priori, it is difficult to compute the solu-

tions [52].

Open platemodel

top boundary

plate

fluid

𝒆𝑥

𝒆𝑦

Figure 3.10: Geometry of the open plate: Energy can cross the bottom boundary.

Restricting attention to the plate itself leads to the open plate model. Thereby,

the problem is reduced onto a bounded domain, namely 𝑦 ∈ [−ℎ/2, ℎ/2] ∪

ℎ+/2. The resulting geometry is depicted in Fig. 3.10. The plate is open in the

sense that energy is not necessarily confined in the computational domain, but

can leave or enter through the open boundary and is, therefore, not conserved.

The boundary point denoted ℎ+/2 represents the region in the fluid next to

the plate, i.e., 𝑦 → ℎ/2 from above. As a consequence of the domain reduction,

the degrees of freedom of the fluid domain have been reduced to just one

scalar. This is sufficient to represent the effect that the fluid has on the plate,

but not to fully describe the wave field in the fluid domain. In this sense,

attention has indeed been restricted to the plate. However, we will see in

Subsec. 3.2.7 that the exterior field is, nonetheless, approximated in restricted

spatial and temporal regions.

The eigensolutions of this model will be denoted as QGWs throughout this

monograph. They form a purely discrete spectrum, which represents the

resonances of the plate [79]. It is, therefore, much easier to deal with math-

ematically and conceptually, because every field contribution is associated

to one resonance instead of a continuum of modes. In most cases, just a few

such eigensolutions are sufficient to represent an arbitrary field in the plate

with high accuracy. This is possible because the overall wave field in the plate
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is highly dominated by its resonances. In this sense, the model converges

much faster.

There is one major difficulty with the open plate model: the eigenfunctions

diverge with distance from the plate [75], see Subsec. 3.2.7 for details. As a

consequence, the eigensolutions are not (normal) modes in the usual sense [46,

79]. Instead, a generalization was developed applicable to open systems

called quasinormal modes (QNMs) [54, 76–80], also known as resonant states

or Gamow states. This precise mathematical framework closely resembles

normal modes of conservative systems and allows the existing mathematical

tools to be utilized. For the best of the authors knowledge, this concept has

not yet been introduced in ultrasonics. However, it is widely employed in

other physical disciplines, e.g., in astrophysics to describe gravitational waves

from black holes [55], in quantum physics to model confined particles [76]

and in classical electromagnetism/optics to describe leaky resonators [77, 79].

More recently, leaky optical waveguides have also been studied in the context

of QNMs [52].

According to Ref. [77], the QNMs of a resonator will form a complete set

if (i) the material parameters exhibit one or more discontinuities and (ii)

the material parameters approach a constant value sufficiently rapidly with

𝑦 → ∞. Thereby, the completeness property holds only on the interior of

the resonator. Condition (i) is very intuitive because it provides a natural

definition of the interior, namely the region between the two outermost

discontinuities. Furthermore, the QNMs are orthogonal under a suitable

definition of the inner product [77].

The two conditions for completeness are met by the fluid-coupled plate, where

the discontinuities correspond to the plate’s faces. Hence, we expect QNM the-

ory to be applicable to wave propagation in the fluid-coupled plate. Although

we are able to compute the QGW solutions, see Sec. 3.2.2 and 4.2, no accompa-

nying QNM theory has been developed so far. This would be highly desirable

because further in-depth analysis, e.g., perturbation of the solutions, would

be possible.

Similar to the full plate-fluid model, the open plate accepts both outgoing as

well as incoming solutions. These correspond to waves with power flux out of

the plate or into the plate, respectively. The latter are usually disregarded a-

priori by applying a radiation condition [49, 79, 81, 82]. Our approach is to keep

the incoming solutions and (if necessary) discard them after solving the QGW

problem. Note that incoming waves are easily identified, see Subsec. 3.2.5.
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Truncated fluid model (PMLmodel)

A third modeling approach is to truncate the fluid domain at certain distance

from the plate with an additional finite or infinite layer, see Fig. 3.11. The wave

field is damped in this layer until it has (hopefully) vanished. This ensures

that the bottom of the computational domain does not affect the solutions.

The finite truncation layer seen in Fig. 3.11b, for example, removes the effect

of the undesired bottom boundary. The solutions obtained using a finite

truncation layer are expected to be similar to the ones of the infinite layer if

the wave field has been sufficiently attenuated when it reaches the artificially

introduced bottom boundary, i.e., if the damping and the layer size are large

enough.

top boundary

plate

fluid

PML

𝒆𝑥

𝒆𝑦

(a) infinite PML

top boundary

plate

fluid

PML

bottom boundary

𝒆𝑥

𝒆𝑦

(b) finite PML

Figure 3.11: Plate with fluid truncated by a PML layer.

Two widely used methods exist to implement the truncation layer:

Absorbing layer: A medium with increasing dissipation is used in the trun-

cating layer [83]. Careful design is necessary to minimize reflections at

the interface between fluid and absorbing layer.

Perfectly matched layer (PML): The elastodynamic equations are extended

onto complex 𝒙-coordinates on the truncating layer [75, 84]. Energy

can smoothly transition from the real domain to the complex domain.

If correctly designed, this will ensure an efficient damping of the wave

field in the PML’s domain and avoids reflections from the fluid-PML

interface.

The consequences of introducing a truncation layer will be discussed by means

of the PML method as presented in Ref. [75]. Such a model for the plate-fluid

system can be regarded as amixture between the full plate-fluid model and the

open plate model [75]. Indeed, this is also reflected in the resulting spectrum.

In case of the infinite PML, it consists of the trapped modes, a finite number

of QGWs and a continuum of so-called PML-modes. By truncating the PML
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to a finite domain, the continuum of PML-modes is sampled, resulting in a

purely discrete spectrum in this case [84].

This model is applicable to general geometries and simple to implement. A

further major advantage is that it leads to a complete set of eigensolutions,

i.e., they are capable of representing arbitrary fields in the plate and the

fluid [84]. Although the PML-modes have often been regarded as spurious

and undesired [85], they are actually important for a full description of the

field in the fluid [84]. Note, moreover, that the PML removes incoming waves.

For waveguide design and analysis, usually the dispersion curves are of fore-

most interest. In this case, it is necessary to elaborately discard the PML-

modes with somewhat arbitrary conditions on the computed wavenumbers.

This is a very common approach to obtain dispersion curves [83, 85–87] but

results in an incomplete open waveguide spectrum because not all QGW are

included. The number of “revealed” QGWs depends on the free parameters

of the PML [75]. In general, the solutions are highly dependent on these

free parameters, which are unrelated to the physics. Using inappropriate

parameter values might lead to incorrect results, which means that a basic

a-priori understanding of the solutions is required. A further disadvantage is

that the truncated fluid model is computationally more expensive compared

to the open plate because the fluid and the PML regions usually need to be

discretized with many more degrees of freedom then the plate itself. The men-

tioned circumstances make this method somewhat unattractive. Nonetheless,

if used correctly, it is a powerful method, especially in applications where the

wave field in the fluid domain is of high relevance.

3.2.2 QGWproblem formulation

After reviewing possible models for the fluid-coupled plate and the nature

of the corresponding harmonic solutions, we will now derive the governing

equations of the open plate problem. Consider for this end wave propagation

in a homogeneous, isotropic, linearly elastic plate with single-sided fluid

loading as depicted in Fig. 3.12.

Seeking plane harmonic solutions, the same ansatz as in (3.1) is used for the

plate. The field in the fluid domain is known a-priori to be a longitudinal

inhomogeneous plane wave (see Subsec. 2.1.4) with displacement amplitude 𝑈

and has the form

𝒖f(𝒙, 𝑡) = i
𝒌f

𝜅f
𝑈

⏟
𝒖f(𝒌f,𝜔)

ei(𝒌f⋅𝒙−𝜔𝑡) , (3.33)
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ℎ

ℜ𝒌f

ℑ𝒌f

ℜ𝑘𝑥

ℜ𝑘𝑦

ℑ𝑘𝑥

ℑ𝑘𝑦

ℜ𝑘𝑥
ℑ𝑘𝑥

plate
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Figure 3.12: Plate with adjacent fluid.

with the wave vector 𝒌f = 𝑘𝑥𝒆𝑥 + 𝑘𝑦𝒆𝑦, see Fig. 3.12. The QGW changes in

amplitude as the wave propagates along the plate because it exchanges energy

with the fluid half-space. This needs to be accounted for by allowing the

wavenumber 𝑘𝑥 to be complex, i.e., the problem consists of inhomogeneous

plane waves according to Subsec. 2.3.1. According to the generalized Snell’s

law [42], the tangential wavenumber components in the plate and the fluid

coincide, i.e., 𝑘𝑥 in the fluid and the plate are identical, this is sketched in

Fig. 3.12. We recall from (2.68a) that the wave in the nondissipativ fluid

half-space, which is a longitudinal wave, is required to fulfill the dispersion

relation

𝒌f ⋅ 𝒌f = 𝑘
2
𝑥 + 𝑘

2
𝑦 = 𝜌𝜔

2/𝜆f
L =∶ 𝜅

2
f = 𝜔

2/𝑐2f ∈ ℝ . (3.34)

Therefore, if 𝑘2𝑥 is complex, 𝑘2𝑦 also needs to be complex. Furthermore, with

known 𝑘𝑥 the direction of the attenuation vectorℑ𝒌f is uniquely determined, as

it is necessarily orthogonal to the propagation vectorℜ𝒌f and at the same time

satisfies Snell’s law. For example in Fig. 3.12, the attenuation vector will point

towards the plate if the QGW is attenuated in 𝒆𝑥, i.e., ℑ𝑘𝑥 > 0; otherwise it

points away from the plate. With this restriction, 𝑘𝑦 = ±√𝜅
2
f − 𝑘

2
𝑥 is uniquely

determined given 𝑘𝑥.

Plate-fluid interface conditions

Proceeding as in Sec. 3.1, we see that the equation of unforced motion of the

plate is valid without modification. Merely the bottom boundary condition

changes according to the interface conditions between solid and fluid media

introduced in (2.29). For this end we need the acoustic pressure, which we

write in terms of the displacement in the fluid 𝒖f as

𝑝(𝒌f, 𝜔) = −𝜆
f
Li𝒌f ⋅ 𝒖f(𝒌f, 𝜔) = 𝜆

f
L𝜅f(𝜔)𝑈 = 𝑍f𝜔𝑈 . (3.35)
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3.2 Quasi-guided waves in fluid-coupled plates

A formulation in terms of the displacement amplitude 𝑈 yields a term that is

linear in 𝜔, while a formulation using a displacement potential would result

in ∼ 𝜌f𝜔
2. We opted for the former representation because 𝑈 has units that

are consistent with the unknown 𝒖 in the plate.

Using the differential operator 𝒢 defined in (3.2), it is now possible to write

out the interface conditions stated in (2.25a) and (2.26) in terms of 𝑘𝑥 and 𝜕𝑦.

This gives

𝒆y⋅𝑻

⏜⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏜[(i𝑘𝑥𝑩1 + 𝑩0𝜕𝑦) ⋅ 𝒖(𝑦)] |𝑦=ℎ/2 +

𝑝

⏜⏞⏜𝑍f𝜔𝑈𝒆y
!
= 𝟎 , (3.36a)

𝑍f𝜔 𝒆y ⋅ 𝒖(𝑦)|𝑦=ℎ/2
− i𝑘𝑦𝜆

f
L𝑈⏝⎵⏟⎵⏝

𝑍f𝜔𝒆y⋅𝒖f

!
= 0 , (3.36b)

whereby the displacement continuity equation was multiplied with𝑍f𝜔 = 𝜆
f
L𝜅f

in order to obtain equations with consistent units.

The quasi-guided wave problem

Compared to waves in a free plate, there is one additional scalar degree of

freedom, namely 𝑈, which can be determined with the additional equation

(3.36b). Introducing the new vector of unknowns

𝑞(𝑦) = [𝒖(𝑦), 𝑈]
⊤

, (3.37)

and rewriting the equation of motion (3.4a) and the interface conditions (3.36)

accordingly yields the QGW problem:

[(i𝑘𝑥)
2𝐿

2
+ i𝑘𝑥𝐿

1
𝜕𝑦 + 𝐿

0
𝜕2𝑦 + 𝜔

2𝑀] ⋅ 𝑞(𝑦) = 0 on 𝑦 ∈ (−ℎ/2, ℎ/2),

(3.38a)

[i𝑘𝑥𝐵
1
+ 𝐵

0
𝜕𝑦 + 𝜔𝐵

𝜔
+ i𝑘𝑦𝐵

𝑦
] ⋅𝑞(𝑦) = 0 at 𝑦 = ±ℎ/2 . (3.38b)

Thereby, the introduced matrices 𝐿
𝑖

and 𝑀 can be written with the tensors for

Lamb waves given in (3.12) as

𝐿
2
= [
𝑳2 𝟎

𝟎 0
] , 𝐿

1
= [
𝑳1 𝟎

𝟎 0
] , 𝐿

0
= [
𝑳0 𝟎

𝟎 0
] , 𝑀 = [

𝜌𝑰 𝟎

𝟎 0
] , (3.39)
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while the new boundary matrices 𝐵
𝑖

make use of the Lamb boundary tensors

from (3.13) and are given by

𝐵
1
= [
𝑩1 𝟎

𝟎 0
] , 𝐵

0
= [
𝑩0 𝟎

𝟎 0
] , 𝐵

𝜔
= [

𝟎 𝑍f𝒆𝑦

𝑍f𝒆𝑦 0
] , 𝐵

𝑦
= [
𝟎 𝟎

𝟎 −𝜆f
L

] .

(3.40)

Note that the formulation of the BC (3.38b) is also valid for the plate’s free

surface by setting 𝜆f
L = 𝑍f = 0.

Nontrivial solutions for 𝑞(𝑦) satisfying (3.38) are sought. Hence, similar to

Lamb waves in a free plate, quasi-guided waves are determined by an EVP.

Observe that the transversal wavenumber 𝑘𝑦 = ±√𝜅
2
f − 𝑘

2
𝑥 appears explicitly

in the BC (3.38b). For this reason, the EVP is no longer a polynomial EVP in

𝑘𝑥 but a more generally nonlinear EVP. This fact makes it substantially more

difficult to obtain the QGW solutions. To point out the resulting complexity,

the following remarks are in order:

Nonlinear: The square root term is highly nonlinear and poses a challenge

even for modern nonlinear eigenvalue solvers.

Nonunique: The term is nonunique as the square root has two solutions

(emphasized by the ±-sign). Both satisfy the equations but correspond

to different eigenvectors.

Nonholomorphic: The square root is nonholomorphic. As a consequence,

an approximate representation using a power series is not feasible, i.e.,

this approach cannot be used to convert the problem to an easier to

solve polynomial EVP.

Numerical methods exist to solve nonlinear EVPs [88, 89]. These are usually

based on iterative linearization of the equations [88, 90, P11]. In contrast to

linear eigenvalue solvers, these methods are often computationally demanding

and might miss eigensolutions. Contour integration techniques are also

employed to transform a holomorphic nonlinear EVP [91] to a linear one inside

an appropriately chosen region of the complex 𝑘𝑥-plane. For this purpose,

it is first necessary to remove singular points and ensure the uniqueness of

the EVP. The method yields spurious solutions, which have to be discarded

appropriately [91].
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3.2 Quasi-guided waves in fluid-coupled plates

3.2.3 Polynomial form of the QGWproblem through
change of variable

A technique was developed in this work that avoids the difficulties inherent to

nonlinear eigenvalue solvers. The procedure has been published and discussed

in Refs. [P3, P9, P14]. It is based on a trigonometric change of variables inspired

by Hood [92], where a somewhat different nonlinear EVP is solved that models

a radio-frequency gun cavity (particle accelerator component). Independently,

a similar procedure has been developed in Ref. [57] to obtain leaky wave

solutions of optical waveguides in terms of the transversal wavenumber.

We transform the QGW problem into polynomial form by the change of

variable

i𝑘𝑥
def
=

i𝜅f

2
(𝛾 + 𝛾−1) , (3.41a)

⇒ i𝑘𝑦 = ±
𝜅f

2
(𝛾 − 𝛾−1) = i√𝜅2f − 𝑘

2
𝑥 , (3.41b)

with the new variable 𝛾 ∈ ℂ ⧵ 0. Substituting the above definitions into the

QGW problem (3.38) results in a rational EVP of the form

[𝛾2𝐺
2
+ 𝛾i𝐺

1
𝜕𝑦 + (𝐺

0
𝜕2𝑦 + 2𝐺

2
+ 𝜔2𝑀) + 𝛾−1i𝐺

1
𝜕𝑦 + 𝛾

−2𝐺
2
]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝑊

r
(𝛾)

⋅𝑞(𝑦) = 𝟎 ,

(3.42a)

[𝛾iΓ∓
𝑑
+ Γ

0
𝜕𝑦 + 𝜔Γ

𝜔
+ 𝛾−1iΓ±

𝑑
]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐵±

r
(𝛾)

⋅𝑞(𝑦)|𝑦=±ℎ/2 = 𝟎 ,

(3.42b)

in 𝛾, where 𝐺
2
= −

𝜅2f

4
𝐿
2

, 𝐺
1
=

𝜅f

2
𝐿
1

, 𝐺
0
= 𝐿

0
and Γ

0
= 𝐵

0
, Γ

𝜔
= 𝐵

𝜔
,

Γ±

𝑑
=

𝜅f

2
(𝐵

1
± i𝐵

𝑦
). The matrix Γ±

𝑑
is the only complex one and includes

dissipation due to radiation losses. While 𝐵+
r
(𝛾) is due to the positive sign in

(3.41b), 𝐵−
r
(𝛾) corresponds to the negative sign.
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3 Guided and quasi-guided waves

Furthermore, we can multiply (3.42a) and (3.42b) with 𝛾2, which for our

matters yields an equivalent [P3] polynomial EVP:

[𝛾4𝐺
2
+ 𝛾3i𝐺

1
𝜕𝑦 + 𝛾

2(𝐺
0
𝜕2𝑦 + 2𝐺

2
+ 𝜔2𝑀) + 𝛾1i𝐺

1
𝜕𝑦 + 𝐺

2
] ⋅ 𝑞(𝑦) = 𝟎 ,

(3.43a)

[𝛾3iΓ
+1
+ 𝛾2 (Γ

0
𝜕𝑦 + 𝜔Γ

𝜔
) + 𝛾iΓ

−1
] ⋅ 𝑞(𝑦)|𝑦=±ℎ/2 = 𝟎 .

(3.43b)

Polynomial EVPs as in (3.43) are very common and much easier to solve because

they have a linear representation in a higher-dimensional state-space [88].

Note that this linearization is not an approximation, but rather an equivalent

representation. It is worth remarking that the linearized representation is not

unique and some might be more appealing for numerical implementation

than others [88, 93]. The easiest and most widely used one is the companion

linearization [88]. After linearization, the discretized problem can be solved

using conventional linear numerical eigenvalue solvers, thereby inheriting all

advantages that these solvers provide. This procedure is fast and reliably as it

finds all solutions. After solving for the eigenvalue 𝛾, the axial and transversal

wavenumbers are easily obtained by substituting into the definition (3.41a)

and (3.41b).

The implemented Elastodynamic Acoustic Toolbox (EDAT) relies on a spectral

collocation (SC) scheme to discretize and solve the QGW problem, see Chap. 4

for details. The solution of a 1 mm thick aluminum plate coupled on one side

to glycerol is shown in Fig. 3.13. Note the high degree of symmetry in the three

spectra. Depending on the choice of sign in (3.41b), we obtain two different

EVPs. In the next section, we will see that each one of them uniquely and fully

describes the QGWs, i.e., only one needs to be solved.

3.2.4 Structure of the QGWproblem

Let’s discuss the structure associated to the change of variable (3.41) and the

QGW problem (3.42) or (3.43). This structure provides valuable information

about the expected spectrum.

Sign convention: The variable change 𝛾 ↦ 𝛾−1 represents the choice of sign

of 𝑘𝑦, see (3.41b). At the same time, 𝑘𝑥 remains invariant.

Palindromicity: 𝑊
r

is palindromic [94], meaning that 𝑊
r
(𝛾) = 𝑊

r
(𝛾−1),

i.e., if the terms sorted by power of 𝛾 are reversed in order, the matrix
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Figure 3.13: Spectrum of the eigenvalues and wavenumbers at 1 MHz mm. The unit circle is

shown in (a) for reference. One quadruple solution (always appear together) has been marked.

Note that in the 𝑘𝑦-domain, the four marked points collapse onto two double points.

function remains unaltered. This does not hold for𝐵±
r

, however, we find

the important relation 𝐵∓
r
(𝛾−1) = 𝐵±

r
(𝛾). Hence, if 𝛾𝑛 is an eigenvalue

corresponding to 𝐵+
r

, then 𝛾−1𝑛 will be an eigenvalue due to 𝐵−
r

. We

conclude that the two EVPs obtained by the choice of sign lead to

inverted 𝛾-spectra.

Conjugate parity: 𝑊
r

is conjugate even [94], i.e., 𝑊
r
(𝛾) = 𝑊∗

r
(−𝛾) =

𝑊∗

r
(−𝛾−1). Furthermore, the relation 𝐵±∗

r
(−𝛾−1) = 𝐵±

r
(𝛾) holds

because Γ±∗
𝑑
= Γ∓

𝑑
. As a result, if 𝛾𝑛 is an eigenvalue then−𝛾∗−1𝑛 will also

be an eigenvalue.

The above properties have important consequences. Due to the first two,

the choice of sign in (3.41b) and correspondingly (3.42b) or (3.43b) is irrele-

vant [P3]. 𝐵+
r

and 𝐵−
r

yield inverted 𝛾-spectra. However, 𝛾 and 𝛾−1 lead to

the same axial wavenumbers 𝑘𝑥 and – considering the respective choice of

sign in (3.41b) – they also lead to the exact same transversal wavenumbers 𝑘𝑦.

As a result, the two problems formulated by 𝐵+
r

and 𝐵−
r

are fully equivalent

in terms of the wavenumbers (albeit not in 𝛾) and any one of them fully and

uniquely describes the QGW spectrum. Without loss of generality, we choose

the positive sign in (3.41b), i.e., we set 𝐵
r

def
= 𝐵+

r
, and solve the corresponding

QGW problem obtaining the full set of solutions. This is a remarkable feature

of the proposed solution method [P3].

Moreover, due to the geometric symmetry, if 𝑘𝑥 is a solution, −𝑘𝑥 must also

be a solution corresponding to a wave propagating in opposite direction. This
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3 Guided and quasi-guided waves

implies that if 𝛾𝑛 is a solution, either−𝛾𝑛 or−𝛾−1𝑛 must also be one. Together

with the conjugate parity property, the truly complex eigenvalues due to 𝐵+
r

are seen to appear in quadruples, namely {𝛾𝑛, −𝛾
−1
𝑛 , 𝛾∗𝑛 , −𝛾

∗−1
𝑛 }. Overall, the

symmetries in the 𝛾- and (𝑘𝑥, 𝑘𝑦)-spectra are summarized in Table 3.2. An

exemplary quadruple has been highlighted in Fig. 3.13.

Table 3.2: The eigenvalues 𝛾 appear in quadruples, which leads to the specified symmetries in

the spectrum. The corresponding axial and transversal wavenumbers are specified exemplarily.

solution wave vector ℜ𝑘𝑥 ℑ𝑘𝑥 ℜ𝑘𝑦 ℑ𝑘𝑦 denotation

𝛾 (𝑘𝑥, 𝑘𝑦) + + + - outgoing forward

−𝛾−1 (−𝑘𝑥, 𝑘𝑦) - - + - outgoing forward

𝛾∗ (𝑘∗𝑥, −𝑘
∗
𝑦) + - - - incoming backward

−𝛾∗
−1

(−𝑘∗𝑥, −𝑘
∗
𝑦) - + - - incoming backward

3.2.5 Classification of waves
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(b) 𝑘𝑦-plane

Figure 3.14: Classification of the QGWs according to their wavenumbers. The 𝑘𝑥-plane cannot

distinguish between outgoing/incoming nor convergent/divergent waves. Similarly, in the 𝑘𝑦-

plane it is not possible to identify the axial propagation direction of phases nor of attenuation.

The symmetry of the spectra leads to a natural classification of the waves

according to their wavenumbers. Let’s first examine the meaning of each of

the wavenumber components before moving on to the actual classification.

First, the 𝑘𝑥-plane shown in Fig. 3.14a characterizes the wave field in the axial

direction, i.e., along 𝒆𝑥. The real part identifies whether the phases of the

waves propagate right (𝒆𝑥) or left (−𝒆𝑥), while the imaginary part leads to

attenuation or amplification of the wave field in 𝒆𝑥. The imaginary part

might also be zero, i.e., the waves propagate without attenuation, in which
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3.2 Quasi-guided waves in fluid-coupled plates

case we call them (perfectly) guided or trapped if additionally ℑ𝑘𝑦 > 0.

The latter will be discussed in detail later on.

Second, the 𝑘𝑦-plane shown in Fig. 3.14b characterizes the wave field in

transversal direction, i.e., along 𝒆𝑦. Note that the energy flux in the fluid,

and hence through the plate’s boundary, is in direction ℜ𝒌f. Therefore, ℜ𝑘𝑦
indicates whether energy flows out or into the plate. Moreover, based on ℑ𝑘𝑦
it is possible to differentiate between divergent and confined wave fields,

depending on whether the field increases or decreases with distance from the

plate. Notice that both solutions are physically possible in a limiting sense, i.e.,

for perfectly harmonic inhomogeneous plane waves. This will be discussed in

detail in Subsec. 3.2.7.

Overall, based on both 𝑘𝑥 and 𝑘𝑦 it is possible to classify waves into the

following three categories with two subcategories each:

Trapped waves: These waves have no transversal energy flux, i.e., ℜ𝑘𝑦 = 0

and additionally they are confined within the proximity of the plate,

i.e., ℑ𝑘𝑦 > 0 (see Fig. 3.15). They could also be called perfectly guided

waves, as in nondissipative media they propagate along the plate with-

out attenuation, i.e., ℑ𝑘𝑥 = 0. The trapped waves form the discrete

modal spectrum [75] mentioned in Subsec. 3.2.1 that complements the

radiation modes of the full plate-fluid model. In addition to the trapped

waves, guided waves with diverging wave fields in transversal direction

(Fig. 3.16), i.e., ℑ𝑘𝑦 < 0, also satisfy the QGW-problem (3.43) [95–97].

This is considered unfeasible and the solutions are regarded as nonphys-

ical [98]. Finally, we note that the confined and diverging guided waves

form characteristic real-valued loops in the dispersion curves [96], a

matter that will be discussed in more detail in Subsec. 3.2.9 and 3.2.10.

plate

fluid
ℜ𝒌f

ℑ𝒌f

Figure 3.15: trapped wave

plate

fluid
ℜ𝒌f

ℑ𝒌f

Figure 3.16: physically infeasible

Outgoing or leakywaves: The energy flux of outgoing/leaky waves is away

from the plate, i.e., ℜ𝑘𝑦 > 0. They describe acoustic radiation phenom-

ena and attenuate as they propagate along the plate [46, 50, 75, 99]. If

they are attenuated in the same direction as their phase propagation, i.e.,

if ℑ𝑘𝑥 is of same sign as ℜ𝑘𝑥, we call them forward waves (Fig. 3.17),

otherwise we speak of backward waves [100] (Fig. 3.18). Note that

energy considerations require that the attenuation of leaky waves must
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always be in the same direction as their net energy flux in the plate.

plate

fluid ℜ𝒌f

ℑ𝒌f

Figure 3.17: forward leaky

plate

fluid ℜ𝒌f
ℑ𝒌f

Figure 3.18: backward leaky

Incoming waves: These waves exhibit energy flux towards the plate, i.e.,

ℜ𝑘𝑦 < 0. They describe processes where energy in the fluid couples

into the plate [101]. Incoming waves are the complementary waves to out-

going waves, having complex conjugate eigenvalues. They also appear as

forward (Fig. 3.19) and backward (Fig. 3.20) waves but in this case the

net energy flux in the plate is in opposite direction to the attenuation

ℑ𝑘𝑥. This accounts for the fact that, as they propagate along the plate,

they increase in amplitude due to the supply of energy. Incoming waves

are most often disregarded a-priori by applying a radiation condition as

discussed in Subsec. 3.2.1.

plate

fluid ℜ𝒌f

ℑ𝒌f

Figure 3.19: forward incoming

plate

fluid

ℜ𝒌f
ℑ𝒌f

Figure 3.20: backward incoming

Only waves whose phases propagate to the right have been considered above.

The same solutions propagating to the left also exist, giving a total of 12

categories. To characterize waves based on the wavenumbers, both their axial

and transversal wavenumbers are required – one of them is not sufficient.

The eigenvalue 𝛾 is different to the wavenumbers in that it segregates each

class of wave into a unique region in the 𝛾-plane. The allocation of the 12

regions is displayed in Fig. 3.21. Explicitly in terms of the real part 𝛾r = ℜ𝛾

and the imaginary part 𝛾i = ℑ𝛾, the wavenumbers according to (3.41) read
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2
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2
i

+ i
𝜅f

2

𝛾i(𝛾
2
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2
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2
i

, (3.44a)
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2
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𝜅f

2

(−𝛾r)(𝛾
2
r + 𝛾

2
i − 1)

𝛾2r + 𝛾
2
i

, (3.44b)

with 𝛾r, 𝛾i ∈ ℝ. As can be seen in the numerators, the real and imaginary parts

of 𝑘𝑥 and 𝑘𝑦 will cross zero when crossing the ℜ𝛾-axis, the ℑ𝛾-axis and the

unit circle. These define the regions in the 𝛾-plane and are shown in Fig. 3.21.
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Figure 3.21: Classification of the QGWs in the 𝛾-plane. Waves fully segregate into the 12

categories.

According to (3.44), waves on the ℑ𝛾-axis transport energy purely in 𝒆𝑦. As

the free plate surface is free of energy flux, energy considerations disallow

such solutions. Waves whose eigenvalue is on the unit circle are perfectly

guided, i.e., neither attenuated nor amplified. At the same time, the wave

vector in the fluid would have a transversal component (except for real 𝛾) with

according energy flux. Therefore, this region is also prohibited. On the other

hand, eigenvalues on the ℜ𝛾-axis can in fact be obtained and they do also

represent perfectly guided waves. These can be trapped, i.e., confined to the

proximity of the plate, or divergent. The latter are labeled “nonphysical”.

Due to the symmetry of the setup along the 𝑥-coordinate, the left propagating

and right propagating waves must be identical if the coordinate is flipped. For

the remainder, and throughout this monograph, only waves whose phases (or

sometimes energy instead) propagate to the right will be discussed. Moreover,

we will restrict attention to the outgoing waves, as the incoming ones are

analogous. This leaves us with the first quadrant of Fig. 3.21, where we include

the trapped waves on the real line but exclude the nonphysical guided waves.

In terms of the wavenumbers, this is equivalent to restring toℜ𝑘𝑥 > 0 with

ℜ𝑘𝑦 ≥ 0 and ℑ𝑘𝑦 > 0. Overall, three different kind of waves are found within
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3 Guided and quasi-guided waves

this restricted region, namely leaky forward, leaky backward and trapped

waves. These will be examined in the following section.

3.2.6 Dispersion of quasi-guided waves

So far we examined and categorized the eigensolutions (𝛾𝑛, 𝑞
𝑛
) at one given fre-

quency. The QGW problem can be solved for a range of frequencies to obtain

dispersion curves 𝛾𝑛(𝜔) and derived quantities. The frequency-dependent

eigenvalues and wavenumbers of a brass plate coupled on one side to water

are shown in Fig. 3.22. The eigenvalues in Fig. 3.22a move continuously with

frequency – as would be expected – some of them on the real axis or close

to the unit circle. These are the solutions of interest because they represent

lowly attenuated waves (see Subsec. 3.2.5).
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Figure 3.22: Dispersion curves parametrized by the frequency-thickness product 𝑓ℎ.

The corresponding complex wavenumber planes are displayed in Fig. 3.22b

and Fig. 3.22c. Thereby, all solutions except the nonphysical ones have been

retained. The imaginary axis extends have been chosen such as to highlight the

lowly attenuated waves. Note that the 14 branches in the 𝑘𝑥(𝑓) plane collapse

onto 7 double-branches in the 𝑘𝑦(𝑓) domain because it cannot distinguish

between left and right propagating waves, as was already observed in Fig. 3.13.

Fig. 3.23 takes a closer look at the dispersion curves in the three-dimensional

[𝑓, ℜ𝑘𝑥, ℑ𝑘𝑥] domain. Thereby, the solutions have been split into forward

and backward waves. As can be observed in Fig. 3.23a, the curves appear in

pairs: for each leaky wave, there is one incoming wave with the sameℜ𝑘𝑥 but

opposite ℑ𝑘𝑥. This is more clearly seen in Fig. 3.23b, which zooms into the

region of Fig. 3.23a where four such waves meet. The wavenumbers of S1’ and

S2b’ move closely along the real line but before meeting, they abruptly turn

into the highly attenuated regime. This phenomenon has been interpreted as

an “interaction” between propagating and nonpropagating solutions of the

free plate spectrum induced by the loading of the fluid [102].
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Figure 3.23: Dispersion curves of the axial wavenumbers 𝑘𝑥(𝑓) splitted into forward and 
backward waves: (a) and (b) show all solutions, while (c) and (d) restrict to trapped and leaky 
waves.

For the sake of clarity, we remove the incoming waves and retain only the 
trapped and leaky waves in Fig. 3.23c, yielding single branches for each wave. 
In many applications the incoming waves are not of relevance, i.e., when 
emitter and receiver are both located on the plate. Lastly, the projection 
onto the 𝑓-ℜ𝑘𝑥 plane is plotted in Fig. 3.23d. In this representation, we 
included a portion of the negative ℜ𝑘𝑥 plane to clarify that the curves extend 
symmetrically into this region. The similarity to the free brass plate spectrum 
(see Fig. 3.4a) is clearly noticeable. It is due to the high impedance mismatch 
between the plate and the fluid, hence, we may consider the plate to be 
“lightly fluid loaded”. Accordingly, we have adopted a mode labeling based 
on the free plate spectrum but appended with a dash, e.g., A0 → A0’, albeit 
the solutions of the single-sided fluid-coupled plate do not exhibit a definite
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3 Guided and quasi-guided waves

parity. In comparison to the free plate, one more mode is obtained in the

present example. It is called the quasi-Scholte (QS) mode and is the only

trapped wave in this setup.

More dispersion curves of the same setup are presented in Fig. 3.24. The first

plot, i.e., Fig. 3.24a, shows again the wavenumbers but includes color-coded

information about the attenuation of the waves. The corresponding phase

velocities 𝑐p = 𝜔/ℜ𝑘𝑥 can be seen in Fig. 3.24b. The QS mode approaches

the phase velocity 𝑐f of water from below, as it increasingly confines to the

fluid domain. While in the free plate the higher order waves exhibit a strict

cut-off frequency where the phase velocity tends to infinity, this is no longer

the case for the leaky waves. Instead, the attenuation of the waves increases

strongly near “cut-off”, while the phase velocity reaches a maximum and then

decreases steadily as it extends down to zero frequency. This is best seen with

the S1’ wave in Fig. 3.24b.
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Figure 3.24: Dispersion characteristics of a brass plate with single-sided water contact.

A peculiarity of the water-coupled brass plate is the behavior of the A0’

wave [103]. At certain frequency (0.35 MHz mm in Fig. 3.24), it splits into two
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3.2 Quasi-guided waves in fluid-coupled plates

non-attenuated branches. In the present example (not so in the water loaded

PMMA plate, see Sec. 3.2.10), we find that they are all nonphysical according

to Subsec. 3.2.5 and the solutions have been discarded. This phenomenon has

been denoted as real-valued loops [95–97, 103, 104]. It is discussed in some

more detail with the help of the brass plate immersed in water (Subsec. 3.2.9)

and the water-coupled PMMA plate (Subsec. 3.2.10).

The attenuation of the waves is furthermore an important parameter for many

applications. It is shown explicitly in Fig. 3.24c. Remember that for high

frequencies, the A0 and S0 waves of the free plate converge towards Rayleigh

surface waves. A similar behavior can be observed for the plate with single

sided fluid loading, but each of the waves converges towards a wave confined

to the proximity of either of the two plate’s surfaces. The S0’ wave at high

frequencies is confined at the plate-fluid interface and radiates strongly, thus

exhibiting high attenuation. On the other hand, the A0’ wave tends towards

an actual Rayleigh wave at the free boundary and features small attenuation

values.

Lastly, the energy velocities computed by (3.15) are shown in Fig. 3.24d. It

is important to remark that equipartition of energy is no longer valid in the

fluid-loaded case and both the kinetic and elastic energy need to be computed

separately, see Subsec. 2.2.5. In the fluid-coupled case, we also obtain negative

energy velocities associated with backward waves. Correspondingly, these

waves must exhibit negative attenuation (attenuated in −𝒆𝑥), which is con-

firmed by Fig. 3.24c. The energy velocity is always lower than the longitudinal

plane wave velocity 𝑐l of the medium.

We remark that the energy velocities are computed as an integral over the plate

alone according to (3.15), i.e., ignoring the fluid domain. This is conventionally

considered a good approximation, at least for leaky waves with “light fluid

loading” [91, 100, 105]. It is remarkable that no rigorous definition of energy

velocity in open waveguides has yet been formulated [100]. For instance, the

computed energy velocity of the QS mode is not valid in the dispersive region,

as has been found experimentally [S2]. This wave exhibits real wavenumbers

and, hence, it could be resorted to the group velocity in this case instead,

which is given in (2.86).

3.2.7 Wave field of trapped and leakywaves

The wave field associated to QGWs is inspected in the following. The leaky

forward waves, in particular, exhibit highly unusual properties that need to

be explained in detail. We discuss the QS wave and leaky waves separately.
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3 Guided and quasi-guided waves

Trapped waves: The quasi-Scholte (QS) plate wave

As seen in the last section, one trapped wave is supported by the brass plate

with single sided fluid loading and is called the QS mode. More trapped waves

might appear in other configurations, see Subsec. 3.2.10. In contrast to the

leaky or incoming waves, trapped waves are proper modes, as they form the

discrete spectrum of the full plate-fluid model, see Subsec. 3.2.1.
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Figure 3.25: Wave field of the QS mode at 0.3 MHz in a 1 mm thick brass plate on water.

The QS wave is confined to the proximity of the plate, as can be observed

in Fig. 3.25. The 𝑢𝑥(𝑦) and 𝑢𝑦(𝑦) displacement components represent the

eigenfunctions of the QGW problem, whereby they are extrapolated in the

fluid region using the plane wave ansatz (3.33). Similar to Lamb waves in a

free plate, the displacement components are 90° out of phase everywhere, i.e.,

there are no losses. Fig. 3.25a shows the two components at their respective

maximum phase normalized to the overall maximum magnitude. Due to the

flexural wave character of the plate motions seen in Fig. 3.25b, it has also been

called the “A-wave” [64, 106].

The QS wave exhibits a strong interaction with the fluid, while at the same

time it does not attenuate as it propagates. This unique behavior makes it

attractive for characterizing fluid properties, e.g., wave speed and viscosity [66,

S2], or for fluid level metering [107].

Leaky Lambwaves

The wave field of leaky Lamb waves consists of a resonance pattern inside the

plate and a radiating field in the fluid. This is depicted in Fig. 3.26, showing

the normalized particle displacement along the 𝑦-coordinate. Unlike the

trapped or perfectly guided waves, the complex displacement components

𝑢𝑥(𝑦) and 𝑢𝑦(𝑦) are no longer 90° out of phase. In the figure they are shown at
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3.2 Quasi-guided waves in fluid-coupled plates

their corresponding phase where they become maximal. The cross-sectional

displacements fully describe the wave fields. For visualization purposes, some

exemplary wave fields have been extruded to the 𝑥-𝑦-plane and are displayed

in Fig. 3.27.
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Figure 3.26: Cross-sectional displacements of forward and backward waves. Adapted from

[P5].
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Figure 3.27: Wave field of some QGWs. The corresponding points in the dispersion diagram

are marked in Fig. 3.24a. Adapted from [P5].

Backward waves decay with distance from the plate, while forward waves

exhibit an acoustic field which increases exponentially in transversal direction.

This behavior can clearly be observed in Fig. 3.26. Diverging wave fields

are a well-known behavior of leaky waves in nondissipative media and are a

direct consequence of energy conservation [46, 52, 57, 75, 78, 79, 86, 87, 91,
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108]. This can be understood by inspecting Fig. 3.28, where the fields and the

corresponding propagation and attenuation vectors are shown. The thickness

of the arrows indicate schematically the evolution of the field’s amplitude in

this direction. The acoustic wave is radiated into the fluid in direction ℜ𝒌f

and must propagate without attenuation in this direction. Consequently, a

wave that is attenuated in 𝒆𝑥 must necessarily increase in 𝒆𝑦. The converse

situation applies to backward waves.
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Figure 3.28: Wave fields of forward and backward waves. While backward waves are confined

to the proximity of the plate, the perfectly harmonic field of leaky forward waves must diverge

with distance from the plate. Reproduced from [P5].

The exponential growth in transverse direction needs to be understood as an

asymptotic behavior for perfectly harmonic waves in time and space [52, 79].

Like any other infinite phenomenon, this is per se unfeasible. Incidentally, this

also applies to homogeneous plane waves in unbounded media (see Sec. 2.3).

There is, however, one significant difference between the two: while the wave

structure𝒖(𝑦) of free waveguides is square integrable, the leaky wave structure

diverges as 𝑦 → ∞ and is no longer square integrable. Arbitrary fields in the

fluid domain (e.g., finite fields) cannot be represented as a linear combination

of the QGWs. In other words, these waves are not part of the spectrum of

the fluid half-space and for this reason, they have been denoted as improper

waves [108]. This fact is not surprising, as QGWs restrict attention to the plate

and its resonances.

The exponential growth in transverse direction is, nonetheless, physical in the

sense that it corresponds to the observable behavior of the waves in limited

spatial and temporal regions [52, 79]. This can be confirmed by a full-scale

finite element (FE) simulation that is agnostic of the QGWs. Fig. 3.29a shows

the geometry of the harmonic simulation consisting of a 1.5 mm brass plate

in contact on one side with water (material parameters in Appendix A). The

displacements over the plate’s left boundary are prescribed using the complex

𝑢𝑥(𝑦) and 𝑢𝑦(𝑦) displacement structures of the A0’ wave at 1.5 MHz mm,
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Figure 3.29: FE computation of the leaky field close to a source. The A0’ wave is excited at

1.5 MHz mm.

which was already presented in Fig. 3.26a. The unbounded fluid domain and

the plate are cropped with a PML layer. Note that the excitation of a pure

QGW is not guaranteed because the displacement structures of two different

QGWs are not orthogonal on the plate’s domain alone.

The surface plot in Fig. 3.29b shows the resulting 𝑢𝑦(𝑥, 𝑦) displacement field

in plate as well as in the fluid. The inhomogeneous plane wave radiated by

the QGW can clearly be identified on a wedge enclosed by the plate and a line

inclined at the radiation angle of the QGW. The remaining part of the field is

expected to be non-representable by the QGW solutions as the continuum of

the radiation modes (see Subsec. 3.2.1) are required for that. Contrary to the

leaky field, this part is highly dependent on the left BC.

The exponential growth in transverse direction can best be observed in Fig. 3.30,

showing the field along the vertical lines marked in Fig. 3.29b. The exponen-

tial envelope expected from the QGW solution (ℑ𝑘𝑦 = 0.275 Np/cm) fits well

to the FE result. The further away from the source, the larger is the 𝑦-range

where the QGW approximation is valid. At the same time, the observable

“ripples” in the leaky field become more visible. These are due to other QGWs

(the A1’ wave in this setup) being excited in addition to the A0’ wave, albeit

with a substantially lower amplitude [109]. As the A1’s attenuation is lower

than that of the A0’ wave, it will become dominant when far enough away

from the source. Moreover, non-representable contributions of the radiation

modes are present everywhere, including in the leaky field region and they

become visible once the leaky waves have attenuated sufficiently.
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Figure 3.30: Normalized 𝑢𝑦(𝑦) displacements on the cross sectional lines marked in Fig. 3.29b.

The expected exponential envelope from the QGW solution is also shown.

The leaky waves will separate best in a transient FE simulation when the energy

velocity of the waves differ. This is the case for the A0’ and A1’ wave. The setup

for the transient FE simulation is identical to the harmonic setup in Fig. 3.29a

without the PML and a slightly larger fluid domain as to avoid reflections from

the boundaries. The transient prescribed displacements across the plate’s

thickness are ramped-up by a raised cosine of 10 periods length, i.e.,

RCR(𝑡) = {

1

2
−

1

2
cos (

𝜋𝑡

10𝑇
) , for 0 ≤ 𝑡 ≤ 10𝑇

1 for 𝑡 > 10𝑇 ,
(3.45)

where 𝑇 = 2𝜋/𝜔 denotes the period. The overall prescribed displacements

are then given by

𝑢𝑖,exc =RCR(𝑡) sin𝜔𝑡ℜ𝑢𝑖(𝑦) + RCR(𝑡 + 𝑇/4) sin𝜔(𝑡 + 𝑇/4)ℑ𝑢𝑖(𝑦) ,

𝑖 = {𝑥, 𝑦} , (3.46)

where 𝑢𝑖(𝑦) denote the modal 𝑢𝑥(𝑦) or 𝑢𝑦(𝑦) displacements – in this case of

the A0’ wave.

The result of the transient FE simulation at fixed time is presented in Fig. 3.31.

The spatial excerpt is chosen such as to visualize the location where the A0’

and A1’ waves separate due to the difference in energy velocity. The leaky field

in the fluid clearly shows the different radiation angles of the two waves.
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Figure 3.31: Transient leaky field at 𝑡 = 65 µs: the A1’ wave is excited in addition to the A0’

wave. The fluid shows the pressure, while the plate domain shows the 𝑢𝑦 displacements, each

normalized to their respective maximum.

3.2.8 Radiation

Radiation denotes the transport of energy away from a given system or domain.

The QGW model considers the plate as a waveguide which radiates inhomo-

geneous plane acoustic waves into the fluid (see Subsec. 3.2.2). The waves in

the plate and in the fluid are, thereby, strongly linked through the interface

conditions. Two essential aspects of the radiation process will be discuss in

the following: (i) geometric characteristics, and (ii) balance of power flux

through the plate-fluid interface.

Radiation angle

First, we analyze the geometric properties of the radiated field. The setting

of the brass plate coupled on one side to water is sketched in Fig. 3.32a. The

plot reveals the possible locations of the propagation vectors 𝒌f in the fluid.

Thereby, we have exploited the fact that the developed solution procedure

allows us to uniquely obtain both components 𝑘𝑥 and 𝑘𝑦. This immediately

yields the radiation angles, which describe the inclination of the plane wave

fronts (see Sec. 2.3) with respect to the plate’s normal. They are given by

𝜃 = arctan
ℜ𝑘𝑥

ℜ𝑘𝑦
= arcsin

ℜ𝑘𝑥

|ℜ𝒌f|
. (3.47)

The radiation angles are plotted in Fig. 3.32b. We see that at given frequency,

only a discrete set of radiation angles are in resonance with the plate. Note

that the QS wave, which has been omitted in Fig. 3.32b, is perfectly guided

along the plate, i.e., it does not radiate, but rather propagates with 90° along

the plate. According to the symmetry in Fig. 3.23d, the plot of the radiation
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Figure 3.32: Propagation vectors and radiation angles of the brass plate with single sided water

coupling.

angles is symmetric across the frequency axis because negativeℜ𝑘𝑥 lead to

negative 𝜃. If we had chosen to plot only waves which propagate energy to the

right – instead of the ones that propagate phases to the right – then backward

waves would be characterized by negative radiation angles [P5]. The S2b’ wave

could, for example, be regarded as a continuation of S2’ into the negative 𝜃

regime.

Albeit the definition (3.47) is very evident from a geometrical point of view, it is

not conventional. The reason is presumably that most computational methods

do not easily yield both wavenumber components (nor |ℜ𝒌f|!). For the best

of the authors knowledge, the literature exclusively relies on approximative

computations which neglect the inhomogeneity of the radiated plane waves,

namely 𝜃approx = arcsin
ℜ𝑘𝑥

𝜅f
, see Ref. [59, 70, 110, 111]. In order to relate the

approximation to (3.47), we recall that the radiated waves are inhomogeneous

waves satisfying the dispersion relation (2.71) withℜ𝒌f ⋅ ℑ𝒌f = 0. Accordingly,

we may re-write (3.47) as 𝜃 = arcsin
ℜ𝑘𝑥

√𝜅2f +|ℑ𝒌f|
2

. This expression reduces to

𝜃approx for ℑ𝒌f = 𝟎, i.e., when the inhomogeneity of the wave is neglected.

While𝜃approx is based on the homogeneous plane wave phase velocity with𝜅f =

𝜔/𝑐f, definition (3.47) uses the actual phase velocity of the inhomogeneous

plane wave according to (2.75). Note that the inhomogeneity of the wave tends

to increase with the radiation rate. Hence, the conventional radiation angle

computation represents a good approximation for lowly radiative waves.
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3.2 Quasi-guided waves in fluid-coupled plates

Radiation rate: balance of power flux

Second, we analyze the balance of average power flux as sketched for a section

of the plate in Fig. 3.33 assuming nondissipative media. A QGW transports

𝑃 𝑃o

d𝑃r

d𝑥

𝒆𝑥

𝒆𝑦

Figure 3.33: balance of power flux

the net power 𝑃 through the plate’s cross section at 𝑥 = 0 and carries 𝑃o out of

this section at an infinitesimal distance d𝑥. Thereby, it has lost the power d𝑃r

to the fluid by means of acoustic radiation. The power flux 𝑃 can be computed

with the elastodynamic Poynting vector 𝒑(𝑥, 𝑦) given in (2.50) as

𝑃 = ∫
ℎ/2

−ℎ/2

𝒆𝑥 ⋅ 𝒑(𝑦)d𝑦 , (3.48)

where𝒑(𝑦)denotes the average power flux density at𝑥 = 0, i.e, 𝒑(𝑦) = 𝒑(0, 𝑦).

The power flux leaving at the end of the section can be written in linear

approximation by

𝑃o = 𝑃 + 𝜕𝑥 (𝑃 e−2𝛼𝑥)|
𝑥=0

d𝑥 = 𝑃 − 2𝛼𝑃d𝑥 . (3.49)

Note that the QGW looses a fraction of its power per d𝑥 to the fluid and,

therefore, the wave field must be attenuated as e−𝛼𝑥. Accordingly, the power

flux is proportional to e−2𝛼𝑥. Lastly, the radiated power flux is obtained by

d𝑃r = 𝒆𝑦 ⋅ 𝒑(ℎ/2)d𝑥 . (3.50)

With the above considerations, the balance of power flux, i.e., 𝑃 = 𝑃o + d𝑃r,

then reads

2𝛼𝑃 = 𝒆𝑦 ⋅ 𝒑(ℎ/2) , (3.51)

which finally yields the radiation rate

𝛼 =
𝒆𝑦 ⋅ 𝒑(ℎ/2)

2𝑃
. (3.52)
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3 Guided and quasi-guided waves

The radiation rate describes how fast the QGW field decays in axial direction

due to radiation and is, hence, a measure for power leakage into the fluid.

We conclude from (3.52) that it is basically determined by the average power

flux density through the plate-fluid interface, i.e., the component normal to

the boundary. This can be observed in Fig. 3.34, which compares the power

flux density vectors in the free brass plate to the one coupled to water. While

energy flux is confined inside the free plate as expected, the Poynting vectors

in the fluid-coupled plate incline towards the fluid half-space.

−0.5
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𝑦
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m
m

(a) free brass plate:

S0 at 2 MHz mm

−0.5

0

0.5

𝑦
in
m
m

(b) brass plate loaded with water at the

bottom: S0’ at 2 MHz mm

Figure 3.34: Average power flux density vectors 𝒑(𝑦). Adapted from [P5].

The radiation rate given in (3.52) was computed for the fluid-coupled brass

plate and the result is compared to the overall attenuation ℑ𝑘𝑥 in Fig. 3.35a.

The radiation rate 𝛼 coincides with the axial attenuation ℑ𝑘𝑥 even for the

highly attenuated waves. We conclude that attenuation is always due to

radiation. This result is not trivial! Remember that the free plate exhibits

attenuated modes (see Subsec 3.1.3) – called nonpropagating modes – albeit

it exhibits no losses, in particular, it does certainly not radiate. Traditionally,

leaky Lamb waves are regarded as a perturbation to the free solutions, where

the non-attenuated modes become attenuated due to radiation. The above

calculation shows that this point of view is correct and that it additionally

holds for the attenuated modes of the free plate.

The finding that attenuation is always due to radiation has a further con-

sequence: nonpropagating waves do not exist in the fluid-coupled plate.

The nonpropagating modes in the free plate are attenuated and exhibit no

net power flux, i.e., 𝑃 = 0. According to (3.52), this will not be possible if

𝛼 = ℑ𝑘𝑥 is to remain bounded. This finding is analogous to waves in dissipa-

tive plates [44]. Contrary to the free plate, waves in the fluid-coupled plate

always carry energy. Consequently, the energy velocity of QGW might be

low but never zero (except on isolated frequency points). This is visualized

in Fig. 3.35b, where the waves with low energy velocity are seen to gradually

propagate more energy as the frequency is increased. The higher the fluid
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3.2 Quasi-guided waves in fluid-coupled plates
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Figure 3.35: Radiation rate and energy velocity: Adapted from [P5].

loading of the plate, the more energy is propagated by these waves – limiting

zero when the fluid loading vanishes, as expected.

3.2.9 Immersed plate: double sided fluid coupling

Plates in contact with a fluid on one side were considered so far. It is straightfor-

ward to extend the presented model to immersed plates, i.e., plates in contact

with the same fluid on both sides. For this end, one additional scalar degree

of freedom is added to the problem, which describes the amplitude of the

inhomogeneous plane wave on the other side of the plate. The linearization

procedure presented in Subsec. 3.2.3 can then be applied as previously.
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Figure 3.36: Dispersion curves of a brass plate immersed in water. The radiation in (b) shows

both single and double sided fluid loading.
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3 Guided and quasi-guided waves

Dispersion curves of a brass plate immersed in water are displayed in Fig. 3.36.

Waves in the the plate with double-sided fluid loading are marked with two

dashes, e.g., A0”. The phase velocities are similar to the ones with single sided

fluid loading. However, one additional trapped wave is obtained, labeled “S” in

Fig. 3.36a. As the symmetry of the problem’s geometry across 𝑦 = 0 has been

restored, the solutions have again a definite parity. One anti-symmetric (QS,

A-wave) and one symmetric (S-wave) trapped wave is obtained [106]. As would

be assumed by perturbation models [41] (see Subsec. 3.1.9), the radiation rate

is approximately doubled compared to single sided fluid loading. However, as

Fig. 3.36b shows, this should rather be considered a rule of thumb. Observe the

opposite attenuation behavior of the A0’ and A0” waves when the frequency is

increased. The wave can no longer tend towards an unloaded surface wave and

always radiates, hence, contrary to single-sided fluid loading, the attenuation

keeps increasing.

The splitting of the A0” wave into a “real-valued loop” [P3, 96, 97, 104, 112, 113]

shall be discussed with the help of the present example, but occurs similarly in

the plate with single sided fluid contact. The relevant region of the dispersion

diagram is shown in detail in Fig. 3.37a and – contrary to the previously

presented dispersion curves – includes the solutions that we consider to be

nonphysical (diverge in the transversal direction, see Subsec. 3.2.5). The A0”

leaky wave is seen to split into two curves with real-valued wavenumbers/phase

velocities, which later on merges again into a leaky wave – labeled again A0”.

Splitting also occurs in the PMMA plate with single-sided water contact shown

in Fig. 3.37b and discussed in Subsec. 3.2.10.
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Figure 3.37: Splitting of dispersion curves.

It is often assumed a-priori that the A0” wave is cut-off at the coincident fre-

quency [59, 67, 70, 91, 102, 104, 112, 114], which is defined as the frequency

where the phase velocity of the wave matches the velocity of homogeneous
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3.2 Quasi-guided waves in fluid-coupled plates

plane waves in the fluid medium. As seen due to the crossing with the S-wave –

whose phase velocity is basically the same than that of the fluid medium – the

splitting of the A0” wave happens well below the coincident frequency. This

can be regarded to be a consequence of the reduced phase velocity of inhomo-

geneous plane waves according to Subsec. 2.3.1 [43]. For a detailed explanation

refer to [115]. We conclude that, contrary to what is widely assumed, subsonic

radiation is possible [43, 115]. A remarkable example is a water-loaded alu-

minum plate, where the A0’ wave does not split at all and continues down to

zero-frequency [P5, 97].

3.2.10 Strongly fluid-loaded plate

So far the discussion focused on plates with “light fluid loading”, i.e., the

impedance mismatch between plate and fluid was high [116]. Most relevantly,

the ratio of fluid mass density to plate mass density was low [102], see eq. (4.2).

The developed model includes an analytically exact fluid-structure interaction,

i.e., it is applicable for arbitrary material combinations. This is demonstrated

by considering a plate made of poly(methyl methacrylate) (PMMA), i.e., plex-

iglass, which is in contact on one side with water (material parameters in A).

Fig. 3.38 shows the corresponding dispersion curves. The strong interaction

between the PMMA plate and the fluid lead to qualitatively and quantitatively

very different dispersion curves as compared to the free plate case [P5]. This is

presumably because the transverse wave speed in the plate is below the fluid

wave speed in the present example.

In the inspected range, three trapped waves are found and are displayed

separately from the leaky waves. The latter are plotted color coded according

to their attenuation. Note that the “higher order” trapped waves appear after

a leaky wave has split into a real-valued loop which closes at 𝑓 → ∞ [96]. This

is illustrated in detail in Fig. 3.37b, which includes the nonphysical solutions

(diverge in the transversal direction, see Subsec. 3.2.5). The trapped wave

consist of a section of one of the branches of the real-valued loop, while the

remaining parts are nonphysical solutions. Rostyne et al. [98] have confirmed

this behavior experimentally.
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Figure 3.38: Dispersion characteristics of a PMMA plate with single-sided water contact. (a)

adapted from [P5].
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4 Numerical SolutionMethods

With the theoretical description of the wave propagation phenomena in hand,

we now proceed to discuss numerical solution techniques. The two funda-

mental approaches to solve waveguide problems are discussed and compared

in Sec. 4.1. We use a special discretization procedure denoted as spectral col-

location, which is introduced in Sec. 4.2. Next, Sec. 4.3 explains how to deal

with the polynomial eigenvalue problems resulting from discretization. Lastly,

a software tool has been implemented that handles waveguide problems and

it is presented in Sec. 4.4.

4.1 Solving waveguide problems

Two fundamentally different approaches exist to solve the derived guided and

quasi-guided wave problems: (i) root-finding of the characteristic equation,

and (ii) discretization of the eigenvalue problem. These will be presented and

discussed separately in the following. Emphasis is put on approach (ii), which

is used by the Elastodynamic Acoustic Toolbox (EDAT) implemented for

Matlab, see Sec 4.4.

4.1.1 Root-finding of the characteristic equation

Root-finding of the characteristic equation(s) is the most wide spread solution

technique [117]. It is reviewed in the following as background information

to the EVP-based technique developed in the next section. The EVP-based

technique is used throughout this work.

The main idea of the method consists in resolving the 𝑦-dependence of the

eigenfunctions analytically as a superposition of plane waves [38, 41, 118]. The

resulting representation is called a partial wave decomposition [41, 118], see

Subsec. 2.3.1. The situation is sketched in Fig. 4.1 for a plate loaded with two

different fluids on either side.

For instance, inside the plate this yields the ansatz

𝒖(𝑦, 𝑘𝑥, 𝜔) ∶= 𝐴𝒆
l+
u ei𝑘l

𝑦𝑦+𝐵𝒆t+
u ei𝑘t

𝑦𝑦+𝐶𝒆l−
u e−i𝑘l

𝑦𝑦+𝐷𝒆t−
u e−i𝑘t

𝑦𝑦 , (4.1)

where𝑘l
𝑦 and 𝑘t

𝑦 fulfill the plane bulk wave dispersion relations𝑘2𝑥+(𝑘
l
𝑦)

2 = 𝜅2l
and 𝑘2𝑥 + (𝑘

t
𝑦)

2 = 𝜅2t , see Subsec. 2.3.1. As a consequence, the ansatz is
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Figure 4.1: Partial wave decomposition of a leaky wave inside a plate in contact with two different

fluids 𝑎 and 𝑏. The polarization vectors are also indicated.

guaranteed to fulfill the equations of motion. For leaky waves, a similar

ansatz is used for the fluid domains, having only one (longitudinal) partial

wave. Note, moreover, that the polarization vectors of longitudinal waves are

known to be 𝒆l+
u = 1/𝜅l[𝑘𝑥, 𝑘

l
𝑦]
⊤ and 𝒆l−

u = 1/𝜅l[𝑘𝑥, −𝑘
l
𝑦]
⊤. Similarly, for the

transverse waves we have 𝒆t+
u = 1/𝜅t[−𝑘

t
𝑦, 𝑘𝑥]

⊤ and 𝒆t−
u = 1/𝜅t[𝑘

t
𝑦, 𝑘𝑥]

⊤.

The plate-fluid interface conditions (or BCs at free surfaces) still need to

be satisfied. Inserting the partial wave decompositions into the appropri-

ate conditions yields a homogeneous algebraic system of equations for the

unknown plane wave amplitudes. For instance, the single sided fluid plate

case is retrieved by setting 𝑉 = 0 and inserting (4.1) into (3.36), resulting in

a 5 × 5 linear system for 𝐴, 𝐵, 𝐶, 𝐷 and 𝑈. The lengthy derivation could be

simplified somewhat by introducing a potential formulation [41]. The fact

that symmetric and antisymmetric solutions decouple could additionally be

exploited for symmetric waveguide problems, see Sec. 3.1.

The resulting linear system can always be written in the general form 𝑃(𝑘𝑥, 𝜔)⋅

𝑎 = 0, where 𝑎 denotes the vector of wave amplitudes [118]. The characteristic

equation is then given as det𝑃(𝑘𝑥, 𝜔) = 0. For the case with symmetries, 𝑃

consists of two independent blocks and the characteristic equation segregates

into det𝑃(𝑘𝑥, 𝜔) = 𝐴(𝑘𝑥, 𝜔)𝑆(𝑘𝑥, 𝜔) = 0, where 𝑆 and 𝐴 describe symmetric

and antisymmetric solutions, respectively. For a free plate, each of them results

in an implicit transcendental nonlinear dispersion relation, the so-called

Rayleigh-Lamb frequency equations [33, 59, 65]. In any case, the roots of the

characteristic equation can now be searched numerically using conventional

methods, yielding the desired solutions 𝑘𝑥(𝜔). This, however, is not a simple

task [117, 118].

The procedure discussed above is very general and can be extended to multi-

layered, anisotropic, dissipative and fluid-coupled plates [105, 117]. Several

methods exist to derive the corresponding characteristic equations in an

automated way on the computer, for instance, the global matrix method
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4.1 Solving waveguide problems

(GMM) or the direct matrix method (DMM) could be used [118]. Albeit these

methods deliver analytically equivalent results, they differ from a numerical

point of view. This is very important because zero-finding of the equations

is badly conditioned for numerical treatment. It can be shown that the field

scales exponentially from one interface to another, resulting in numerical

instabilities for high frequency-thickness products [57, 118].

The characteristic equations of immersed or single-sided fluid loaded plates

are given explicitly in a variety of forms in Refs. [64, 95, 102, 113, 116, 119,

120]. For the sake of reference, we reproduce the characteristic equation of

a plate loaded by two different fluids on either side, characterized by the

mass densities 𝜌a, 𝜌b and the wave speeds 𝑐a, 𝑐b, respectively. After slight

adaptations in notation, the characteristic equation is given according to

Ref. [64] by

𝑆a𝐴a + 𝑆b𝐴b −
1

𝜌2
(
𝜌a

𝑘a
𝑦
−
𝜌b

𝑘b
𝑦

)

2

𝜅8t 𝑘
l
𝑦
2

⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
loading asymmetry

= 0 , (4.2)

where 𝑆𝑖, 𝑖 ∈ {a,b} is defined by

𝑆𝑖 =

free plate

⏜⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏜
4𝑘2𝑥𝑘

t
𝑦𝑘

l
𝑦 tanh(i𝑘l

𝑦ℎ/2) + (𝑘
2
𝑥 − 𝑘

t
𝑦
2
)2 tanh(i𝑘t

𝑦ℎ/2) +

+ 𝜅4t
𝜌𝑖𝑘

l
𝑦

𝜌𝑘𝑖𝑦
tanh(i𝑘l

𝑦ℎ/2) tanh(i𝑘t
𝑦ℎ/2)

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
fluid loading

, (4.3)

and 𝐴𝑖 is obtained by replacing all tanh by coth in the above expression. The

Rayleigh-Lamb frequency equations are recovered by setting 𝜌𝑖 = 0. The case

𝜌𝑖/𝜌 → ∞ yields the dispersion relations for a plate with slip BCs, i.e., 𝑢𝑦 = 0

and 𝑇𝑥𝑦 = 0 [102].

Although very popular, root-finding of the characteristic equations suffers of

two inherent problems: (i) it exhibits the mentioned instabilities and (ii) it

is impossible to know if all roots have been found [57, 121]. In general, it is

not even known how many (real) roots are to be expected at given frequency.

This will be particularly detrimental when studying new problems, where

the researcher does barely have a “feeling on how the solutions should look”.

Moreover, root-finding becomes significantly more difficult when complex

valued 𝑘𝑥 are sought. This makes the method especially unattractive for

open waveguides, where most solutions of interest are complex valued. These

difficulties are resolved with the alternative approach presented next.
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4.1.2 Eigenvalue problemdiscretization

The waveguide problems derived in Chap. 3 are ordinary boundary value

problems (BVPs) and can, therefore, be approximated by conventional dis-

cretization methods. The result is an algebraic system of equations approx-

imating the continuous waveguide problem on a discrete set of degrees of

freedom 𝑖 ∈ {1...𝑁}. Fluid loading adds an additional degree of freedom for

the unknown longitudinal wave amplitude 𝑈. The idea is depicted in Fig. 4.2.

fluid

𝑦 𝑢𝑥(𝑦) 𝑢𝑦(𝑦)

𝑢𝑦(𝑦𝑖)

𝑢𝑥(𝑦𝑖)

𝑦𝑖

𝑈 𝑘f

𝒆𝑥

𝒆𝑦

𝒆𝑧

Figure 4.2: Through-thickness discretization of a plate in contact with a fluid.

Note that the general structure of the equations remains thereby unchanged.

After discretization, conventional numerical eigenvalue solvers can be used to

compute the approximated eigenvalues (wavenumbers) for every prescribed

frequency. The discretized eigenfunctions 𝒖(𝑦𝑖) are, thereby, obtained at no

extra cost, which is useful for post-processing and visualization. Advantages

of this method are that [57, 121]

1. it does not suffer of numerical instabilities;

2. all eigenvalues are guaranteed to be found as long as the discretization

order 𝑁 is sufficiently high;

3. complex-valued solutions 𝑘𝑥 are dealt with naturally at no extra cost;

and

4. it is very fast.

A comprehensive discussion on the topic is found in Ref. [121].

A very popular discretization scheme is the FE method. As the 𝑥-coordinate is

resolved analytically by the initial ansatz (3.1) of the waveguide problem, some

authors refer to this procedure as the “semi-analytical finite element” (SAFE)

method [91, 122–124]. Personally, I think that this terminology is deceptive

as well as obscuring and should not be used because the conventional FE

method is being applied to the guidedwave problemwithout any modifications.

Note that the ansatz (3.1) is inherent to the problem of guided waves under

consideration, not to the discretization method. To the best of the author’s
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knowledge, FE discretization of elastodynamic waveguide problems was first

performed by Gavrić [125, 126] without use of the above terminology.

Any other numerical discretization scheme could also be used to solve the

waveguide problem. For instance, spectral methods [48, 121, 127–129], finite dif-

ferences [130], discontinuous Galerkin FEs [131] and scaled-boundary FEs [132,

133] have been employed. We use Chebyshev SC for this purpose, which is

subject of the next section.

4.2 Spectral collocation forwaveguide problems

The Chebyshev spectral collocation (SC) method is used to discretize waveg-

uide problems in this work. The technique and its application is discussed in

detail in the following.

4.2.1 Chebyshev spectral collocationmethod

The continuous domain of plane waveguide problems is 𝑦 ∈ [−ℎ/2, ℎ/2].

Such simple geometries are particularly well discretized by SC methods [134,

135]. Thereby, the unknown function 𝑢(𝑦) – which is a solution of the waveg-

uide problem – is approximated by 𝑢h(𝑦) = ∑𝑖 𝑢𝑖𝜙𝑖(𝑦) ≈ 𝑢(𝑦), consisting

of a weighted sum of known ansatz functions 𝜙𝑖(𝑦). In contrast to FE meth-

ods, a spectral method [134] is characterized by a global approach, i.e., the

ansatz functions 𝜙𝑖(𝑦) are nonzero on the whole domain 𝑦 ∈ [−ℎ/2, ℎ/2]

(except possibly on discrete points). Collocation methods [134] determine

the unknown weights 𝑢𝑖 by requiring that the residuum 𝑢(𝑦) − 𝑢h(𝑦) should

vanish on selected 𝑁 points 𝑦𝑖, 𝑖 ∈ {1...𝑁}, which are called the collocation

points. This is sometimes regarded as a special instance of the weighted resid-

ual method, where the weighting functions of the residuum are chosen as

Dirac delta functions at the collocation points.

Different choices for the ansatz functions𝜙𝑖(𝑦) are possible. On finite domains

the Chebyshev polynomials exhibit optimal behavior [134]. Moreover, the

collocation points 𝑦𝑖 should cluster quadratically to the borders of the domain

in order to ovoid the Gibbs phenomenon [135]. Chebyshev-Gauß-Lobatto

points [134] fulfill this requirement and are used together with Chebyshev

polynomials in the Chebyshev SC method.

For simple geometries and smooth solutions 𝑢(𝑦), the SC method is consid-

ered superior to the FE method. This is mainly due to the fact that the SC
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method converges exponentially for sufficiently smooth solutions, a prop-

erty denoted as spectral convergence [134, 135]. For non-smooth solutions,

polynomial convergence can still be expected in most cases [135]. Another

advantage is that no prior meshing of the domain is required, leading to

simpler implementations. On the other hand, for complex geometries, the FE

method should be preferred. Another disadvantage of the SC method is that it

leads to fully populated matrices. However, this is usually compensated by the

fact that the matrices are substantially smaller due to the spectral convergence

property.

4.2.2 Discretization of the quasi-guided wave problem

The SC method allows to express differentiation explicitly in the form of a

𝑁 × 𝑁 differentiation matrix 𝐷
𝑦

[135, 136]. If 𝑢 is the vector with coefficients

𝑢(𝑦𝑖), then 𝐷
𝑦
⋅ 𝑢 will be the vector of corresponding derivative values, i.e.,

𝜕𝑦𝑢(𝑦)|𝑦=𝑦𝑖. This can be harnessed for simple discretization of the waveguide

problem, which is realized by performing the following formal exchanges in

the equations:

� unknowns: e.g., 𝑢(𝑦) → 𝑢,

� derivatives: e.g., 𝜕𝑦 → 𝐷
𝑦

, and

� constants: e.g., 𝜆L → 𝜆L𝐼
d

,

where 𝐼
d

is the 𝑁 × 𝑁 identity matrix. Furthermore, in the BCs only the

relations for 𝑦 = ±ℎ/2 are needed. For this end, it is sufficient to use the

corresponding rows 𝐷
𝑦
|±ℎ/2 and 𝐼

d
|±ℎ/2 that describe the local mappings.

As a concrete example, we discuss how to solve the quasi-guided wave prob-

lem. The procedure follows along the same lines as the discretization of the

displacement potential formulation of the same problem presented in [P3].

We discretize the generally nonlinear form of the problem instead of the poly-

nomial one. The governing equations of the former are recalled from (3.38),

namely

[(i𝑘𝑥)
2𝐿

2
+ i𝑘𝑥𝐿

1
𝜕𝑦 + 𝐿

0
𝜕2𝑦 + 𝜔

2𝑀] ⋅ 𝑞(𝑦) = 0 on 𝑦 ∈ (−ℎ/2, ℎ/2), (4.4a)

[i𝑘𝑥𝐵
1
+ 𝐵

0
𝜕𝑦 + 𝜔𝐵

𝜔
+ i𝑘𝑦𝐵

𝑦
] ⋅𝑞(𝑦) = 0 at 𝑦 = ±ℎ/2 , (4.4b)
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where 𝑘𝑦 = √𝜅
2
f − 𝑘

2
𝑥 ; while the equations of the polynomial equivalent are

restated from (3.43):

[𝛾4𝐺
2
+ 𝛾3i𝐺

1
𝜕𝑦 + 𝛾

2(𝐺
0
𝜕2𝑦 + 2𝐺

2
+ 𝜔2𝑀) + 𝛾1i𝐺

1
𝜕𝑦 + 𝐺

2
] ⋅ 𝑞(𝑦) = 𝟎 ,

(4.5a)

[𝛾3iΓ
+1
+ 𝛾2 (Γ

0
𝜕𝑦 + 𝜔Γ

𝜔
) + 𝛾iΓ

−1
] ⋅ 𝑞(𝑦)|𝑦=±ℎ/2 = 𝟎 .

(4.5b)

Lastly, we also recall the change of variables (3.41) given by

i𝑘𝑥
def
=

i𝜅f

2
(𝛾 + 𝛾−1) , and (4.6a)

i𝑘𝑦 = ±
𝜅f

2
(𝛾 − 𝛾−1) = i√𝜅2f − 𝑘

2
𝑥 , (4.6b)

which transforms (4.4) into (4.5). The former problem statement is discretized

instead of the more readily solvable polynomial one because the matrices

are all independent of frequency, which means that the discretization can

be performed once before iteration. The change of variables is subsequently

applied iteratively at every frequency. The resulting discrete version of the

polynomial problem is then solved with standard techniques, for details refer

to Sec. 4.3.

Only the continuous components 𝑢𝑥(𝑦) and 𝑢𝑦(𝑦) of the vector of unknowns

𝑞(𝑦) = [𝑢𝑥, 𝑢𝑦, 𝑈]
⊤ are discretized component-wise on the whole domain

𝑦 ∈ [−ℎ/2, ℎ/2]. The scalar unknown 𝑈 of the fluid remains unaffected. Note

that the fluid interacts with the plate at the boundary, in this example at the

bottom surface. The interaction is strictly local, i.e., the above mentioned

rows 𝐷
𝑦
|+ℎ/2 and 𝐼

d
|+ℎ/2 are used instead of the whole matrices.

The goal is to find discrete representations of the matrices and partial deriva-

tives appearing in (4.4). The matrices are given explicitly in (3.39) and (3.40),

which make use of the Lamb wave tensors 𝑳𝑖 and𝑩𝑖 defined in (3.12) and (3.13).

To begin with, the latter tensors are discretized with the method introduced

at the beginning of the section. Using the Cartesian matrix representation

[𝑳𝑖] of the tensors 𝑳𝑖 yields the (2𝑁 × 2𝑁)-matrices

𝐿d

2
= [𝑳2] ⊗ 𝐼

d
, 𝐿d

1
= [𝑳1] ⊗ 𝐷

𝑦
, 𝐿d

0
= [𝑳0] ⊗ 𝐷

𝑦𝑦
, 𝑀d = 𝜌[𝑰] ⊗ 𝐼

d
,

(4.7)
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where⊗ denotes the Kronecker product1. Similarly, the Lamb BC-tensors 𝑩𝑖
result in the (4 × 2𝑁)-matrices

𝐵d

1
= [𝑩1] ⊗ 𝐼

d
|±ℎ/2 , 𝐵d

0
= [𝑩0] ⊗ 𝐷

𝑦
|±ℎ/2 . (4.8)

With the above matrices, a full discretization of the Lamb wave problem in a

free plate has been obtained. Thereby, the partial derivatives 𝜕𝑦 and 𝜕2𝑦 have

been “absorbed” into the matrices through the discrete approximations 𝐷
𝑦

and 𝐷
𝑦𝑦

, respectively.

The plate-fluid interaction is incorporated next. The additional scalar degree

of freedom 𝑈 of the fluid needs to be accounted for. Accordingly, the matrices

in (4.7) and (4.8) are all expanded by one additional zero-row and zero-column,

resulting in matrices of size 2𝑁+1 × 2𝑁+1 and 5 × 2𝑁+1, respectively.

The fluid-structure interaction is represented by the matrices 𝐵
𝜔

and 𝐵
𝑦

appearing in (4.4b) and given in (3.40). The discretized versions make use

of ed
𝑦
= [𝒆𝑦]

⊤⊗ 𝐼
d
|+ℎ/2, where [𝒆𝑦]

⊤ is the row vector [0, 1]. This yields the

(2𝑁+1 × 2𝑁+1)-matrices:

𝐵d

𝜔
= [
𝟎2𝑁×2𝑁 𝑍fe

d
𝑦

⊤

𝑍fe
d
𝑦

0
] , 𝐵d

𝑦
= [
𝟎2𝑁×2𝑁 𝟎

𝟎 −𝜆f

] . (4.9)

Finally, using the above matrices, the discrete version of the QGW problem

(4.4) can be written as

[(i𝑘𝑥)
2𝐿d

2
+ i𝑘𝑥𝐿

d

1
+ 𝐿d

0
+ 𝜔2𝑀d] ⋅ 𝑞d = 0 , (4.10a)

[i𝑘𝑥𝐵
d

1
+ 𝐵d

0
+ 𝜔𝐵d

𝜔
+ i𝑘𝑦𝐵

d

𝑦
] ⋅𝑞d = 0 , (4.10b)

Note that the general structure of the matrices 𝐿d

𝑖
is as described in Fig. 4.3

but without yet incorporating the BCs 𝐵d

𝑖
.

1 The Kronecker product is defined by the block matrix: 𝐴 ⊗ 𝐵
def
= [𝐴𝑖𝑗𝐵]. If 𝐴 is of size

𝑛 ×𝑚 and 𝐵 of size 𝑝 × 𝑞, then 𝐴⊗𝐵 will be of size 𝑝𝑛 × 𝑞𝑚.
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𝑢𝑥

𝑢𝑦

𝑈

𝑢𝑥 → eq. 𝑢𝑦

𝑢𝑦 → eq. 𝑢𝑥

𝑢𝑥 → eq. 𝑈 𝑢𝑦 → eq. 𝑈

𝑈
→

eq
.
𝑢
𝑥

𝑈
→

eq
.
𝑢
𝑦

top BC 𝑇𝑦𝑥

top BC 𝑇𝑦𝑦

bottom BC 𝑇𝑦𝑥

bottom BC 𝑇𝑦𝑦

⋅

𝑢𝑥

𝑢𝑦

𝑈

𝑞

eqs.

for 𝑢𝑥

eqs.

for 𝑢𝑦

eq.

for 𝑈

Figure 4.3: Allocation of the matrix sub-blocks in 𝑃
𝑖

(Γd

𝑖
incorporated into 𝐺d

𝑖
).

The change of variables will be performed prior to incorporating the BCs. At

given frequency 𝑓, we have 𝜔 = 2𝜋𝑓 and 𝜅f =
𝜔

𝑐f
. With this, the change of

variable (4.6) can be performed using the matrices obtained so far. This yields

the discrete version of (4.5), which represents an algebraic polynomial EVP:

[𝛾4𝐺d

2
+ 𝛾3i𝐺d

1
+ 𝛾2(𝐺d

0
+ 2𝐺d

2
+ 𝜔2𝑀d) + 𝛾1i𝐺d

1
+ 𝐺d

2
] ⋅ 𝑞d = 0 , (4.11a)

[𝛾3iΓd

+1
+ 𝛾2 (Γd

0
+ 𝜔Γd

𝜔
) + 𝛾iΓd

−1
] ⋅ 𝑞d = 0 . (4.11b)

As a last step, the BCs are incorporated into the equations of motion. This is

achieved by replacing the rows 1,𝑁,𝑁 + 1, 2𝑁 and 2𝑁 + 1 of the polynomial

coefficient matrices in (4.11a) by the rows of the matrices in (4.11b). Note that

the mentioned rows are the degrees of freedom at the boundaries 𝑦 = ±ℎ/2

for 𝑢𝑥 and 𝑢𝑦, respectively, as well as 𝑈. The final structure of the matrices is

shown in Fig. 4.3.

With the incorporated BCs, we obtain a simple polynomial algebraic EVP in 𝛾,

namely
4

∑

𝑖=0

𝛾𝑖𝑃
𝑖
⋅ 𝑞 = 0 , (4.12)

101



4 Numerical Solution Methods

where we omit the superscript •d for conciseness. This formulation fully and

uniquely describes the QGWs in the fluid-coupled plate [P3]. It can quite

readily be solved using standard techniques, see Sec. 4.3.

It is worth mentioning that (4.11b) can be multiplied by any power of 𝛾. Accord-

ingly, there is some flexibility in where the BCs are actually incorporated. We

found that all options work equally well, but this presumably depends on the

used eigenvalue solver.

Our code solves (4.12) iteratively for all frequencies. At time of implementation,

all parameters are normalized. Moreover, the 𝑦 coordinate is normalized

so that the domain reduces to [−1/2, 1/2] and the differentiation matrices

operate on the unit domain. The computation of the differentiation matrices

relies on the DMSUITE package by Weideman and Reddy [136]. Apart from

normalization, the code closely resembles the equations from last section.

4.2.3 Integration on Chebyshev-Gauß-Lobatto points

After computing solutions, the results are not only meaningful by themselves

but also very useful for further analysis. For instance, many of the studies

showcased in Chap. 6 and Chap. 7 rely on the orthogonality relation (3.22),

which involves the wave’s total average power flux 𝑃. For this purpose, it

is crucial to be able to accurately integrate the field, e.g., the power flux

density 𝑝𝑥(𝑦), over the waveguide cross section.

The numerical results require a numerical integration technique. Gauss

quadrature is optimal, being exact for polynomials of order 2𝑁 − 1 [135, 137].

However, this requires the integrand to be known at the Legendre points.

Remember that the solution has been obtained at the Chebyshev points

instead. An interpolation would be required in order to use Gauss quadrature.

On Chebyshev points, the optimal integration technique is Clenshaw-Curtis

quadrature [135], which is exact for𝑁th-order polynomials. We use a procedure

provided by von Winckel [138] to calculate the quadrature weights. The

implementation is based on the fast Fourier transform. Note that it might be

possible to improve thereon, as the weights can be specified analytically [135].

4.3 Polynomial eigenvalue problems

Polynomial EVPs [88, 139] are common because they appear when modeling

dynamical systems with losses [140]. The nondissipative, closed waveguide

problem also leads to a polynomial EVP. The mentioned examples usually
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result in 2nd order polynomial EVPs. In contrast to this, QGWs in the fluid

coupled plate are described by the 4th order polynomial EVP given in (4.12).

While the numerical solution procedures are the same regardless of the poly-

nomial order, the required computational resources increase.

The conventional solution technique consist in first finding a linear EVP, i.e.,

of the form

(𝛾𝐵 − 𝐴) ⋅ 𝑐 = 0 , (4.13)

in a higher-dimensional “state space” 𝑐 that has the same eigenvalues 𝛾 as

the original problem. This new formulation can then be solved using stan-

dard numerical methods. The linearization procedure is not unique, i.e.,

many different linear representations can be found [88]. Commonly, the

first companion linearization is employed [88], which for (4.12) results in the

companion matrices

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑃
1

𝑃
2

𝑃
3

𝑃
4

−𝐼d 0 0 0

0 −𝐼d 0 0

0 0 −𝐼d 0

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑃
0

0 0 0

0 𝐼d 0 0

0 0 𝐼d 0

0 0 0 𝐼d

⎤
⎥
⎥
⎥
⎥
⎦

, (4.14)

with the companion vector field 𝑐 = [𝛾3𝑞, 𝛾2𝑞, 𝛾𝑞, 𝑞]⊤. From this representa-

tion it is evident that the quartic EVP may have 4(2𝑁 + 1) eigenvalues and

eigenvectors, as the coefficient matrices 𝑃
𝑖

are of size 2𝑁 + 1 × 2𝑁 + 1.

We use Matlab’s polyeig function to solve (4.12) directly. It performs the

companion linearization described above and subsequently applies the QZ-

algorithm to solve the resulting linear EVP. Overall, this method guarantees

to find all QGW solutions. It is stable for all frequency-thickness products

and it is more efficient than root-finding. Furthermore, complex valued eigen-

values/wavenumbers are naturally dealt with, representing no complication.

Some comments on possible further improvements of the EVP solution tech-

nique are in order. As pointed out by Mehrmann and Voss [88], nonlinear

eigenvalue solvers do currently not meet the standards of their linear counter-

parts and are the topic of current research. Any numerical method should be

accurate, efficient and thereby exploit and preserve the structure of the prob-

lem. These requirements are not met by the companion linearization [88].

The increased size of the companion matrices lead to deteriorated efficiency

and the linearized problem may be less well conditioned then the original

one [88]. Furthermore, this linearization does not preserve the structure that
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is evident in the original problem, see Subsec. 3.2.4. Improvements could be

achieved by choosing a structure preserving linearization [88, 93, 94, 141].

Higher efficiency could additionally be achieved using a carefully designed

nonlinear solver that directly operates on the polynomial EVP and, thereby,

exploits and preserves the inherent structure [88].

4.4 Elastodynamic Acoustic Toolbox (EDAT)

A Matlab toolbox called Elastodynamic Acoustic Toolbox (EDAT)2 was devel-

oped that assembles, solves, post-processes and visualizes plane elastodynamic

waveguide problems. The toolbox is the result of a close cooperation between

an adjunct project [142, P7, P8] and the project of this dissertation. While the

former focuses on the effect of pre-stress on the mechanical waveguides, the

latter is concerned with the effects of fluid-structure interaction.

EDAT is entirely based on SC discretization of waveguide problems as exem-

plarily presented in the previous sections. It is capable of handling multi-

layered, fluid-coupled and pre-stressed plane elastodynamic waveguides in

arbitrary anisotropy. For the best of the author’s knowledge, it is currently

the only software package that provides a reliable EVP-based solution of leaky

elastodynamic waves.

2 © 2017 - 2022 Miturheber: Daniel A. Kiefer, einige Rechte vorbehalten. Einige Befugnisse

liegen bei Diehl Metering GmbH, Ansbach, Deutschland.
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Several different methods for generation and measurement of ultrasound and

(quasi)-guided waves are used in this work. This chapter gives an overview

of the working principles and how the experimental setups were realized.

Moreover, measurement results validating the theory presented in Sec. 3.2

are presented and discussed.

5.1 Transducers forwaveguide excitation and sensing

Ultrasonic transducers serve the purpose of converting electrical energy into

mechanical energy and vise versa. In this section, we review, model and

analyze transducer setups capable of exciting guided and quasi-guided elasto-

dynamic waves.

Different physical energy conversion mechanisms can be exploited. Transduc-

ers may rely on piezoelectric [1], magnetostrictive [143], Lorentz force [143],

electrostatic [144] or thermal expansion principles [145]. Piezoelectric and

Lorentz force (eddy current) transduction is most common for ultrasonic elas-

todynamic waves. We focus on the former in this work. Optical excitation is

also common and is based on thermal expansion. In contrast to the previously

mentioned transduction mechanisms, the latter one is not reversible. Optical

sensing of mechanical waves is, nonetheless, possible via interferometry, e.g.,

with a laser Doppler vibrometer (LDV).

The basic properties of the relevant transduction mechanisms can be summed

up as follows:

Piezoelectric: Advantages: good impedance matching, efficient, robust,

small form factor, relatively low cost. Disadvantages: coupling medium

required.

Lorentz forces: Advantages: contactless, no coupling medium required,

broadband, force distribution is well definable, controllable directiv-

ity. Disadvantages: inefficient, must be very close to the waveguide,

only suitable for electrically conductive waveguides, magnet required,

electrical impedance matching required, quite large setup.

Optical interferometry: Advantages: contactless, reactionless, broadband,

highly localized. Disadvantage: only suited for (diffusively) reflecting

or coated waveguides, very large setup, expensive.
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For many applications it is desirable to selectively excite one desired mode

[146], but sometimes transducers that excite a brought range of waves are

preferred instead. Accordingly, we distinguish between selective and multi-

modal transducers. In general, the aim is to ensure a distribution of forces –

prescribed either inside the waveguide or at its boundary – that excites the

desired mode(s). For this end, several different transducer designs are conceiv-

able for each of the transduction mechanisms [59, 143]. The relevant ones will

be discussed in detail in the following subsections. Note that independent of

the specific transducer under study, the excitation of waves is described by

the modal expansion theory [147], see Subsec. 3.1.8.

5.1.1 Bonded piezoelectric ceramics

The setup of a surface bonded piezoelectric ceramic [1] (sometimes referred

to as piezoelectric waver active sensors, PWAS) is shown in Fig. 5.1. These

transducers exhibit good coupling into the plate, operate out of resonance

and are capable of broadband excitation and sensing [148, 149], both in time

and space. This makes them a good choice to measure dispersion curves. Due

to their simplicity and efficiency, they are frequently used in structural health

monitoring.
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(b) glue on plate (c) photograph

Figure 5.1: Bonded piezoelectric ceramic.

The transduction is dominated by the shear stresses 𝑇𝑦𝑥(𝑥). For a stiff and

thin bonding layer, the stresses highly concentrate at the two edges of the

piezoelectric element and are oppositely directed. This leads to a pin-force

model [148], where the Dirac delta like tractions are distributed in odd sym-

metry with respect to the transducer’s center. The idealized stresses are drawn

into Fig. 5.1a.

We are interested in the frequency and mode-dependent surface normal

velocities generated by the transducer. This can be modeled using the modal

expansion technique [147] presented in Subsec. 3.1.8. The tractions prescribed

by the transducer are idealized as discussed above, i.e., they are assumed to

be given by [�̂�𝑦𝑥𝛿(𝑥 − 𝑤/2) − �̂�𝑦𝑥𝛿(𝑥 + 𝑤/2)]𝒆𝑥 + 0𝒆𝑦, where𝑤 is the width

of the piezoelectric ceramic. Hence, the source seen by the mode (𝒗𝑛, 𝑻𝑛) is
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5.1 Transducers for waveguide excitation and sensing

𝑓s𝑛 = 𝑣
∗
𝑥𝑛[�̂�𝑦𝑥𝛿(𝑥 − 𝑤/2) − �̂�𝑦𝑥𝛿(𝑥 + 𝑤/2)], using the 𝑥-component of the

mode’s velocity vector at the surface, i.e., 𝑣𝑥𝑛 = 𝒗𝑛 ⋅ 𝒆𝑥|𝑦=ℎ/2. With this, the

modal envelopes/amplitudes 𝐴𝑛 are given according to (3.30) by

𝐴𝑛 =
ℱ𝑥𝑓s𝑛(𝑥)|𝑘𝑥=𝑘𝑥𝑛

4𝑃𝑛
=
−i

2𝑃𝑛
𝑣∗𝑥𝑛�̂�𝑦𝑥 sin(𝑘𝑥𝑤/2) . (5.1)

The above computation has been done iteratively for a set of frequency values.

The result for a piezoelectric element of width 𝑤 = 2.95 mm on a 1 mm thick

brass plate is displayed exemplarily in Fig. 5.2.
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Figure 5.2: Prediction of wave amplitudes excited by the bonded piezoelectric ceramic.

The transducers are seen to exhibit a wavelength tuning effect [148], whereby

the width 𝑤 of the piezoelectric element strongly determines which wave-

numbers are excited. Zero excitation is found when the width 𝑤 corresponds

to multiples of the wavelength 𝜆, as can be seen in (5.1). On the other hand,

maxima will be found when its width is close to odd multiples of half the

wavelength [149]. In general, the sensitivity tends to increase for narrower ele-

ments due to an averaging effect [149]. The ideal transducer to excite a broad

wavenumber range is a line source. For these two reasons, the transducer

should be narrow in axial direction [149].

In this work, bonded piezoelectric ceramics are used to measure disper-

sion curves. They consists of a rectangular piezoelectric ceramic (PIC255,

PI Ceramic GmbH, Lederhose, Germany) of size 35 × 2.95 × 0.3 mm3 (length

× width × thickness) polarized in thickness direction. It is bonded to the

specimen using a dual-component epoxy adhesive (UHU Plus Endfest 300,

UHU GmbH, Bühl, Germany) in addition to a spot of electrically conduc-

tive glue (Elecolit 325, Panacol-Elosol GmbH, Steinbach, Germany) in the

center, see Fig. 5.1b. The latter allows to contact the lower electrode through
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5 Experimental methods and verification

the conductive plate, as it is mechanically inaccessible after bonding. The

adhesives are cured at 70 °C with approx. 2 kg weight for about 2 h. Such a

transducer mounted to a steel plate is depicted in Fig. 5.1c.

5.1.2 Comb array and comb transducers

Piezoelectric comb array and comb transducers [33, 59] are surface mounted

transducers designed to predominantly excite certain mode. The geometries

are shown in Fig. 5.3. Both rely on wavelength matching, i.e., they pref-

erentially excite wavelengths 𝜆 that are equal to the periodicity 𝑤p of the

transducer’s geometry. They are usually pressed onto the structure and cou-

pled through a fluid layer, e.g., glycerol (glycerine). Due to this layer, when

modeling the transducers it is usually assumed that they cause a purely normal

stress 𝑇𝑦𝑦 over the comb’s fingers [33, 150, 151].

plate

coupling layerpiezos
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𝒆𝑦
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(a) comb array

plate

𝑷

𝑤p

comb

coupling

layer

𝒆𝑥

𝒆𝑦

𝒆𝑧

(b) comb transducer

Figure 5.3: Geometry of comb array and comb transducers.

Each piezoelectric rod of the array depicted in Fig. 5.3a can be driven separately.

This is known as a phased array transducer [33, 152, 153, S6] and is widespread

in medical ultrasonic imaging and also used in nondestructive testing (NDT).

This allows for dynamical matching to any desired mode (phase velocity)

through introduction of a phase delay between the excitation of the elements.

However, the resulting electrical driving unit is highly complex and costly.

Instead, it might be preferable to drive the array as a single unit. In this

case, the matching condition will be fixed to 𝜆 = 𝑤p; unless the polarization

direction of the piezoelectric elements alternates, in which case 𝜆 = 𝑤p/2.

The comb transducer shown in Fig. 5.3b is a simpler variant [59, 150, 151], as it

requires only one piezoelectric ceramic.

For simplicity, we use a comb array transducer1 with only two piezoelectric

ceramics that are polarized in the same direction. It is matched to the A0 mode

of either a 1 MHz mm brass plate or 1.5 MHz mm steel plate. The elements are

held inside a polymer enclosure, which also ensures the electrical connectivity.

1 Developed and build by the project partner Diehl Metering GmbH.
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5.2 Laser Doppler measurement of waveguide spectra

Thereby, the lower electrode of the piezoelectric elements is extended to the

edge of the ceramic for accessibility. The transducer is clamped onto the

waveguide and coupled with a thin layer of glycerol.

We demonstrate exemplarily how the transducer excites the fundamental

modes in the pipe wall. The modeling is performed again according to Sub-

sec. 3.1.8 and the result is presented in Fig. 5.4. As was discussed previously,

we thereby assume that the transducer generates pure normal stresses 𝑇𝑦𝑦(𝑥)

beneath the piezoelectric elements. The corresponding source seen by the

waveguide is 𝑓s𝑛 = 𝑣
∗
𝑦𝑛𝑇𝑦𝑦(𝑥), where 𝑣𝑦𝑛 is the normal velocity at the bound-

ary, i.e., 𝑣𝑦𝑛 = 𝒗𝑛 ⋅ 𝒆𝑦|𝑦=ℎ/2. The spatial distribution of the stresses is taken to

be constant beneath the piezoelectric elements and zero otherwise, as shown

in Fig. 5.4. The spacing 𝑤p between the elements is matched to the A0 wave

and the width of the elements is 𝑤p/2. A high amplitude is obtained for the

A0 wave but not for the S0 mode. The process of A0 wave build-up can clearly

be observed in Fig. 5.4a, while Fig. 5.4b demonstrates the mostly destructive

interference seen by the S0 wave.
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Figure 5.4: Excitation of the A0 and S0 wave by the comb array transducer.

5.2 Laser Dopplermeasurement of waveguide spectra

Laser Doppler vibrometry is a great tool to verify the dispersion curves cal-

culated in Chap. 3. It is an optical measurement method that works without

contact and it is easy to sample the specimen’s surface with high resolution.

This makes it perfect to acquire spatial data, such as wavenumbers and phase

velocity. The method is based on interferometric measurement of the Doppler

frequency shift of a laser beam reflected from a moving surface. The Doppler

shift is proportional to the velocity with which the reflector moves axially to
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5 Experimental methods and verification

the laser beam. Hence, this method provides direct access to the local surface

normal velocity of a mechanical waveguide.

The used vibrometer (PSV-500, Polytec GmbH, Waldbronn, Germany) [154] is

a modified Mach-Zehnder interferometer based on a helium-neon laser. It is

a heterodyne interferometer, which means that it is sensitive to the direction

of vibration of the object. This is achieved by adding a constant frequency

shift to the reference beam (using a Bragg cell), to which the Doppler shift

then adds with the correct sign. After mixing the reference beam and the

object beam, a signal with beating envelope reaches the photo-sensor. The

beat frequency is equal to the Doppler shift and provides direct access to the

normal velocity of the specimen. Moreover, the optical setup includes an

actuated mirror to deflect the laser beam in order to scan the surface of the

specimen.

An overview of the measurement setup used to acquire dispersion curves of

leaky Lamb waves is given in Fig. 5.5. The plate under test (specimen) is fixed

on one side onto a tank filled with water. The excitation signal is generated

on a computer and programmed onto a function generator (33220A, Keysight,

Santa Rosa, CA, USA). After amplification by factor 20 (A 1230-02, Dr. Hubert

GmbH, Bochum, Germany), resulting in 100 V amplitude, it drives a bonded

piezoelectric transducer on the plate. The plate’s surface normal velocities are

scanned by the LDV (PSV-500, Polytec GmbH, Waldbronn, Germany) and

fed back to the computer for post-processing and visualization.

A chirp is used as broadband excitation signal to drive a bonded piezoelectric

ceramic, see Subsec. 5.1.1. The signal is exemplarily shown together with its

magnitude spectrum in Fig. 5.6. It has a center frequency 𝑓c = 1.9 MHz,

bandwidth 𝐵 = 3.8 MHz and a total duration between 𝐷 = 100 µs and 𝐷 =

150 µs. The time-bandwidth product is therewith 380 ≤ 𝐷𝐵 ≤ 570, which

guarantees a better signal-to-noise ratio as compared to pulsed excitation [P4].

Injecting as much energy as possible into the plate is important because the

leaky waves gradually loose energy to the fluid. The higher the initial energy

in the wave, the larger is the range where the wave can be measured with the

LDV. Furthermore, the chirp is windowed with a raised cosine window with a

tapering factor of 0.15 to reduce the Fresnel ripples [P4].

The LDV scans the transducer’s center line marked in Fig. 5.5c, obtaining a dis-

crete set of the time- and space-dependent surface normal velocities 𝑣m(𝑥, 𝑡).

The obtained data can immediately be visualized in a time-space diagram as

in Fig. 5.7. The broadband space-time signal is difficult to interpret. However,

some of the wave and frequency components isolate. For example, a portion
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Figure 5.5: Experimental setup to measure leaky QGW. The water tank and connector was

designed and constructed as part of [S4].

of the S0’ and A0’ waves separate after propagating about 10 cm. The phase

velocity of the waves can be read-off as the slope of the phase lines, while the

energy velocity is given by the slope of the beams. Observe that the phase

fronts of the labeled S0’ wave beam have approximately the same slope as the

beam itself, meaning that it is barely dispersive at all. This suggests that it is a

low frequency component of the S0’ wave (see Fig. 3.24b), which agrees with

the fact that low frequency components come first in the used up-chirp exci-

tation signal. The plate is clamped at about 15.3 cm from the transducer and

the plate edge is about 2 cm further out. A reflection of the S0’ wave from this

edge can clearly be seen in the plot, which propagates in negative 𝑥-direction.

On the other hand, the A0’ wave beam shows lower phase velocity than energy

velocity and is clearly dispersive. Overall, wave components strongly overlap

in the 𝑥-𝑡-domain and are difficult to interpret both quantitatively as well as

qualitatively.
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Figure 5.6: Excitation signal and its spectrum.
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Figure 5.7: Wave field obtained by laser Doppler vibrometry of a 1 mm brass plate on water

(𝐷 = 100 µs).∗

∗ The data was obtained by Dai [S4]. Post-processing and visualization by the author.

For this reason, it is desirable to transform the measured surface normal

velocities 𝑣m(𝑥, 𝑡) into the 𝑘𝑥-𝜔-domain. We use a 2D-Fourier transform for

this end [155, 156, P2]. First, a Fourier transform in time according to (2.30)

maps 𝑡 → 𝜔 for all 𝑥. Then, a subsequent spatial Fourier transform as defined

in (2.32) – albeit only for the 𝑥-coordinate – maps 𝑥 → 𝑘𝑥 for all 𝜔. Overall,

this results in

𝑉m(𝑘𝑥, 𝜔)
def
= ℱ𝑥ℱ𝑡𝑣m(𝑥, 𝑡) = ∫

∞

−∞

∫
∞

−∞

𝑣m(𝑥, 𝑡) e−i𝑘𝑥𝑥 ei𝜔𝑡 d𝑡d𝑥 . (5.2)

Due to the different sign conventions used in the definitions of the temporal

and spatial Fourier transforms, the inverse space-time Fourier transform

matches the initial ansatz for QGWs given in (3.1). This has the consequence

that waves whose phases travel in positive 𝑥-direction are mapped to (𝑘𝑥, 𝜔)

with equal sign. Accordingly, waves with forward propagating phases are found
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5.2 Laser Doppler measurement of waveguide spectra

in the first and third quadrants of the 𝑘𝑥-𝜔-plane – as would be expected from

ansatz (3.1).

The acquired LDV data is sampled in time and space. The discrete version

of the 2D-Fourier transform (5.2) is computed using Matlab’s fft2 function.

Matlab’s sign convention is a negative exponent in the Fourier transform,

which fits to our spatial Fourier transform. We achieve the flipped sign in the

temporal Fourier transform by flipping the temporal axis using fliplr before

performing the transform2. The effect of this operation on the result in the

𝑓-𝑘𝑥-domain can be observed in Fig. 5.8. The lower plane, i.e., quadrants three

and four, is point symmetric to the upper one as the measured time-space

signals are real-valued.
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Figure 5.8: Effect of flipping the temporal coordinate, i.e., using a switched sign in the temporal

Fourier transform (1.5 mm steel plate on water).∗

∗ The data was obtained by Dai [S4]. Post-processing and visualization by the author.

Some notes on the sampling of time and space are in order. The LDV’s sam-

pling frequency is set to 𝑓s = 7.8125 MHz and it scans the transducers’ nor-

mal line with a sampling distance of 245 µm, i.e., a sampling wavenumber

of 𝑘s = 25.6 rad/mm. Fig. 5.8 shows the full 𝑓-𝑘𝑥-domain limited by the

sampling frequency 𝑓s and sampling wavenumber 𝑘s. No wave components

are excited outside this range, hence, no aliasing is seen. Furthermore, the

vibrometer averages each scanned point 100 times to suppress noise.

The thus obtained dispersion curves of a 1 mm brass plate on water is depicted

in logarithmic scale in Fig. 5.9. For the purpose of comparison, the axial

wavenumbers computed according to Subsec. 3.2.3 are plotted on top. In

general, we observe a very good match between experimental results and

2 Instead, it would also be possible to use fft for the spatial coordinate and ifft for the time

variable. The normalization conventions used by Matlab need to be considered when doing

so.
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the numerical model. For higher frequencies, a slight drift can be observed,

which is related to uncertainties in the model parameters like the plate’s

thickness and elastic parameters. The material parameters used to compute

the dispersion curves were taken from the literature, see Appendix A. An

inverse method could be applied to determine accurate values for the material

parameters as well as the plate’s thickness [P2, 157–159].
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Figure 5.9: Measured axial wavenumbers of a 1 mm thick brass plate on water obtained as the

2D-Fourier transform of Fig. 5.7.∗

∗ The data was obtained by Dai [S4]. Post-processing and visualization by the author.

The wave components are seen to isolate in the 𝑓-𝑘𝑥-plane. Reflections sep-

arate from the direct waves and are found on the negative 𝑘𝑥 axis together

with the backward S2b’ wave. The latter has positive energy velocity, as can be

deduced from the curve’s slope. We remark that in the previous analysis, we

mostly separated waves with positive phase propagation from the ones with

negative phase propagation. When inspecting experimental data, however,

it is more meaningful to separate waves according to the direction of their

energy flux (energy velocity) because only the corresponding waves arrive at

the receiver, which is located to one side of the transducer.

The fact that waves isolate in the 𝑓-𝑘𝑥-domain can be harnessed to separate

wave components. We utilize a rectangular pass-band filter as shown in

Fig. 5.9 to obtain the isolated spectrum of the S2b’ wave. An inverse Fourier

transform yields its wave field and is displayed in Fig. 5.10. Note that the

wave is confined to a very limited 𝑥-𝑡-domain and the axis extends have been
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95 100 105
0

1

2

3

time 𝑡 in µs

d
is
ta
n
ce

𝑥
in

cm

0

0.1

0.2

0.3

𝑣
2 m
in

m
2
/s

2

Figure 5.10: Isolated wave field as squared velocities of the S2b’ wave obtained by filtering in

the 𝑓-𝑘𝑥-domain.∗

∗ The data was obtained by Dai [S4]. Post-processing and visualization by the author.

zoomed accordingly. This is because it limits to a narrow frequency band

(remember the chirp excitation) and has high attenuation. As expected, the

wave beam propagates in positive 𝑥-direction, while the phases “propagate”

in negative direction. Backward waves have also been observed in Refs. [68,

160–162].

Guided and QGWs in other plate samples have also been measured and give

similar results. The obtained dispersion curves are provided in the following

for reference without further comments.
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Figure 5.11: Steel plate on water.
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Figure 5.12: Free steel plate.
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Figure 5.13: Aluminum plate on water.∗

∗ The data was obtained by Dai [S4]. Post-processing and visualization by the author.
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5.3 Schlieren photography

Ultrasound in transparent media can be made visible using a schlieren sys-

tem [163]. The term schliere refers to small disturbances of the optical refrac-

tive index. Ultrasound are local variations in pressure (and density) and

through the piezooptic effect, it also causes local changes in the refractive

index. Therefore, from an optical point of view, ultrasound represents a

schliere and when light travels through it, its phase gets modulated. With

a schlieren system the phase variations are translated into intensity varia-

tions [163], enabling us to see or photograph the small variations in refractive

index.

The schlieren system at Lehrstuhl für Sensorik (LSE) is a classical dual-field-

lens arrangement [163]. The setup is sketched in Fig. 5.14 and photographs are

depicted in Fig. 5.15. A 532 nm solid state laser (FDSS532-Q1, CryLas GmbH,

Berlin, Germany) with 1.3 ns pulse duration is used as light source. A neutral

density (ND) filter can be used to adjust the intensity. A beam expander

widens the laser beam, which is then collimated by a lens. This ensures a

homogeneous illumination of the water tank, where ultrasound waves are

to be made visible. A second lens acts as a Fourier transformer. At the focal

distance – which is the Fourier plane of the lens [164] – a filter is responsible

of translating phase variations of the light into intensity variations at the

imaging plane, where the monochromatic CCD camera (Grasshopper3, Point

Grey Research Inc., Richmond, Canada) is located.

laser ND filter

beam

expander

lens 1 tank lens 2

Fourier

filter

camera

schliere

refracted

beam

Figure 5.14: Sketch of the optical schlieren system at LSE.

In ray-optical terms, the homogeneous illumination focused onto the center

point is filtered out, while the rays refracted by the schliere pass above the

filter and eventually reach the camera. In this way, an image of the schliere is

formed. Although the ray model is intuitive, a Fourier optics [164] model is

preferred, as it is a familiar tool capable of representing asymptotically the

wave nature of refractive phenomena.
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Figure 5.15: Photographs of the schlieren system at LSE: (a) full optical system; (b) water

tank with immersed transducer mounted onto a motorized rotational unit; and (c) immersed

waveguide with transducer.∗

∗ Photograph (a) taken by Sivanesan [S3]; (b) and (c) are from Schmid [S9].

As Fourier filter we use a razor blade, thereby blocking almost half of the

wavenumber spectrum. This is known as the classical “knife-edge cutoff”.

The combination of coherent illumination and knife-edge cutoff is not opti-

mal [163], but we obtain satisfactory results for our purposes. Improved

filtering could be achieved using a digital micromirror device [165]. Fourier

optical simulations of our system with different filters were performed as part

of a student’s thesis [S3]. The ø150 mm lenses have a focal length of 2.25 m. For

ultrasound with a wavelength of 1.5 mm, this results in 0.8 mm between the

diffraction orders in the Fourier plane. Hence, the diffraction peaks separate

well in space and a simple mechanical filter in the Fourier plane is suitable.

In general, schlieren photography does not, in a simple manner, provide

quantitative data on the ultrasonic field, i.e., acoustic pressure distributions.

Although such work exists [163], other methods do more readily yield quan-

titative acoustic data. For instance, light refractive tomography [166–168] is
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5.3 Schlieren photography

more suitable for such purposes. Nonetheless, schlieren photographs pro-

vide accurate quantitative data about the geometry of the wave field [15, 169].

Moreover, its advantage is speed, as the entire projection of the wave field is

acquired with a single shot. As a consequence, it is feasible to make videos of

propagating ultrasonic waves.

Schlieren images of leaky ultrasonic fields were obtained of the immersed

plate/strip depicted in Fig. 5.15c as part of the student thesis [S9]. A comb

array transducer is mounted on the free strip region and mainly excites the

A0 Lamb wave at 1 MHz in the 1 mm thick brass strip, see Subsec. 5.1.2. The

wave travels down the guide and eventually reaches the section immersed

in water. While part of the wave’s energy is reflected at this point, most of

it is converted into the A0” wave of the double-sided fluid loaded plate. Its

radiated field is then captured by the schlieren system.

The resulting schlieren photograph of the leaky A0” wave is shown in Fig. 5.16.

A corresponding FE computation of the field is also shown for comparison.

The high attenuation of the A0” wave (ℑ𝑘𝑥 ≈ 1 Np/cm) leads to radiation in

a clearly visible main lobe due to the small effective aperture of radiation

(∼ 1/ℑ𝑘𝑥). This does not correspond to the plane inhomogeneous wave field

expected for leaky waves, see Subsec. 3.2.7. Remember that QGWs are not

able to fully represent the wave field in the fluid domain. Nonetheless, the

leaky wave solution correctly predicts the radiation angle at which the main

lobes are formed, as they represent the resonances of the plate-water system.

The radiation lobes will gradually transition into an inhomogeneous plane

wave field when the radiation rate of the QGW decreases. Consider, for

instance, the S0” wave field shown in Fig. 5.16c. In this case, the low attenuation

(ℑ𝑘𝑥 ≈ 0.1 Np/cm) leads to radiation over a large plate section compared to the

wavelength and, therewith, to the formation of the expected inhomogeneous,

nearly plane wave front.

Nonspecular reflections were also photographed as part of [S9]. Thereby, the

motorized rotational unit seen in Fig. 5.15a serves to adjust the critical angle

of incidence onto the plate. The results are presented jointly with the theory

in Subsec. 6.3.2.
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5 Experimental methods and verification

(a) Schlieren image: A0” (b) FE validation: A0”

−1

0

1

(c) Less attenuated wave: FE simulation of S0”

Figure 5.16: Schlieren photograph of the acoustic field radiated by an A0” leaky wave∗. The

corresponding FE simulation in (b) serves as qualitative comparison and (c) for discussion. The

computed field shows the normalized pressure in the water and the normalized 𝑥-displacement

in the plate (through-thickness direction). Parameters: 1 mm thick brass plate immersed in

water, excited with A0 wave at 1 MHz in the free plate region.
∗ Photograph acquired by Schmid [S9]. Post-processing and visualization by the autor.
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6 Modeling Lambwave-based flowmeters

This chapter is concerned with the adequate modeling of the flow metering

principle, i.e., the details of the V-path signal. In general, for this we need to

describe: (a) the radiation of QGW into the fluid, (b) the effect of the flowing

medium on the acoustic wave, (c) the reflection at the bottom pipe wall, (d)

the back-coupling into the upper pipe wall at incidence. While (a) has been

treated in detail in Sec. 3.2, (b) through (d) will be discussed in the remainder

of this chapter.

6.1 Convection of ultrasound: ray tracing

Wave propagation in quiescent media has been considered so far. Transit-time

UFM relies on changed wave propagation due to flow of the medium, i.e.,

large scale motion. In this case, convective terms need to be included in the

equations of motion for an appropriate description [13]. Instead of developing

a full wave theory of convected ultrasound, we shall rather use the ray theory to

obtain explicit approximations of the time of flight through the pipe’s interior.

The ray theory is provided in this section as a reference according to the

exposition by Pierce [13]. It assumes that the field’s amplitude does not vary

much over one wavelength and that the radii of curvature of the phase fronts

are larger than the wavelength [13]. These conditions will both be fulfilled if

the wave is generated by a leaky Lamb wave with moderate radiation rate, i.e.,

when ℑ𝑘𝑥 ≪ ℜ𝑘𝑥.

The theory predicts the path taken by an arbitrary point on a wave front,

hereinafter, denoted as 𝒙p. According to Sec. 2.3, in a medium at rest, the

point moves with the phase speed 𝑐f in direction 𝒆p, which is normal to the

phase front, resulting in the vectorial phase velocity 𝒄f = 𝑐f𝒆p. If the medium

is flowing with velocity 𝒗0, the point needs to move with the ray velocity

𝒗p
def
=

d𝒙p(𝑡)

d𝑡
= 𝒄f + 𝒗0 (6.1)

with respect to a coordinate system at rest, in order to remain on the phase

front. This situation is depicted in Fig. 6.1a. As the point 𝒙p(𝑡) moves with

time, it traces the so-called ray path.
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6 Modeling Lamb wave-based flow meters
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Figure 6.1: convection of ultrasound

When 𝒗0 and 𝒄f are not collinear, both the direction and the magnitude of the

wave propagation will change due to the fluid flow 𝒗0. Fig. 6.1b illustrated this

by showing the ray velocities in a horizontally flowing medium with different

orientations 𝒆p of the wave fronts. The propagation of the wave fronts is no

longer normal to themselves, but under an angle

𝛾 = arccos(
𝒗p ⋅ 𝒆p

𝑣p
) (6.2)

with respect to the normal vector 𝒆p, where 𝑣p = |𝒗p|.

Ray tracing equations can be derived that predict the ray path [13]. This is

usually done in terms of the slowness vector introduced as

𝒔 =
1

𝑐f + 𝒗0 ⋅ 𝒆p
𝒆p . (6.3)

It can be interpreted as the reciprocal of the velocity of 𝒙p normal to the phase

front under effect of the flow. In the following, it will be used to describe

the change in orientation of the phase front as the wave propagates, i.e., the

quantity
d𝒔

d𝑡
. The ray tracing equations according to Ref. [13] then read

d𝒙p

d𝑡
=

𝑐2f
1 − 𝒗0 ⋅ 𝒔

𝒔 + 𝒗0 , (6.4a)

d𝒔

d𝑡
= −

1 − 𝒗0 ⋅ 𝒔

𝑐f
∇𝑐f − 𝒔 × (∇ × 𝒗0) − (𝒔 ⋅ ∇)𝒗0 . (6.4b)
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6.2 Time-of-flight model of flow meters

The above model accounts for full material and flow inhomogeneity, i.e.,

𝑐f = 𝑐f(𝒙) and 𝒗0 = 𝒗0(𝒙).

Henceforth, we assume a homogeneous medium, i.e., ∇𝑐f = 0. Moreover, the

fluid flow shall be purely in 𝑥-direction and depend only on the transversal

𝑦-coordinate, i.e., 𝒗0(𝑦) = 𝑣0(𝑦)𝒆𝑥. For this stratified flow [13], the ray tracing

equations in the Cartesian 𝑥-𝑦-plane simplify to

d

d𝑡
[
𝑥p

𝑦p

] =
𝑐2f

1 − 𝑣0𝑠𝑥
[
𝑠𝑥

𝑠𝑦
] + [

𝑣0

0
] , (6.5a)

d

d𝑡
[
𝑠𝑥

𝑠𝑦
] = [

0

−𝑠𝑥𝜕𝑦𝑣0

] . (6.5b)

If, moreover, the flow is steady and homogeneous, i.e., 𝜕𝑡𝑣0 = 0 and 𝜕𝑦𝑣0 = 0,

then the orientation of the phase front does not change as the wave propagates.

Ray tracing becomes particularly simple in this case as it results in rectilinear

wave propagation [13]. Eq. (6.5a) is then sufficient and, using the initial value

of 𝒔 given by (6.3), it reduces to the local and instantaneous definition of the

ray velocity given in (6.1).

Let the phase front be inclined at an angle 𝜃 with respect to 𝒆𝑦, such that

the Cartesian components of 𝒆p are given by [sin𝜃, cos𝜃]⊤. In Cartesian

components, we may then write

[𝒗p] =
d

d𝑡
[
𝑥p

𝑦p

] = 𝑐f [
sin𝜃

cos𝜃
] + [

𝑣0

0
] . (6.6)

This equation is solved by integrating once, yielding the ray path as desired,

namely

𝒙p(𝑡) = 𝒙p(0) + 𝒗p𝑡 . (6.7)

6.2 Time-of-flight model of flowmeters

While the wave propagates through the pipe’s interior, it is convected by the

medium flowing with velocity 𝒗0 = [𝑣0, 0]
⊤. According to (6.7), this leads to

changed ray paths, which is shown in Fig. 6.2. The axial distance 𝑙 traveled by

the wave though the fluid is flow-dependent, ultimately enabling to measure

the flow velocity. A detailed physical description will be given in the following

and the resulting metering principle will be compared to the conventional

UFM setup and it’s classical modeling approach.
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S
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𝒆𝑥

𝒆𝑦

Figure 6.2: Ray convected by fluid flow.

6.2.1 Lambwave-based flowmeter

For the Lamb wave-based UFM system, the pipe wall itself constitutes the

radiating and receiving elements. They radiate and receive ultrasound under

an angle 𝜃 with respect to the transducer’s normal, which for the sending

element is 𝒆𝑦. The radiating and receiving surfaces are parallel to each other

and aligned with the fluid flow. For this reason, using the ray velocity in (6.6),

we find that the transit time through the fluid is given by

𝜏f =
𝑏

𝒗p ⋅ 𝒆𝑦
=

𝑏

𝑐f cos𝜃
, (6.8)

which is independent of the flow velocity 𝑣0 [31].

Convective ray displacement

The setup can, nonetheless, be used for flow metering because within this

fixed transit time, the propagated axial distance 𝑙 = 𝑙0 + Δ𝑙 of the wave beam

changes with the fluid flow. Using the transit time in (6.8), this distance can

be determined as

𝑙 = 𝒗p ⋅ 𝒆𝑥𝜏f = (𝑐f sin𝜃 + 𝑣0)𝜏f (6.9)

= 𝑏(tan𝜃 +
𝑣0

𝑐f cos𝜃
) = 𝑙0 (1 +

𝑣0

𝑐f sin𝜃
) . (6.10)

Accordingly, the axial displacement of the beam relative to zero-flow is

Δ𝑙 =
𝑏

𝑐f cos𝜃
𝑣0 . (6.11)

Summarizing, we may state that, independent of the flow velocity, the ultra-

sonic wave always couples into the pipe wall at 𝑡 = 𝜏f but displaced by the
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6.2 Time-of-flight model of flow meters

axial distance Δ𝑙(𝑣0) closer to the receiver, hence, causing a flow-dependent

change in arrival time. This is the working principle of Lamb wave-based

UFM. Note that the distances will double for the V-path flow meter setup (cf.

Fig. 6.4).

The displacement of the ultrasonic beam can be verified by a FE simulation of

convected ultrasound. We remark that this computation is not based on ray

tracing, but rather on solving the full convected wave equation [13, 170]. The

simulation was performed for the geometry sketched in Fig. 6.3a. The begin-

ning and ending sections of the pipe are closed by an absorbing layer in order

to avoid reflections. The transient simulation is excited by a prescribed acous-

tic pressure at the marked boundary segment. Radiation under an angle is

achieved by prescribing the pressure as 𝑝(𝑥, 𝑡) = 𝑝0𝑔e(𝑥)𝑔t(𝑡)ℜ ei(𝑘𝑥𝑥−𝜔𝑡−𝜋),

with 𝑘𝑥 = 3.52 rad/mm and 𝜔 = 2𝜋 rad/s, which corresponds to a radiating

A0’ wave in the pipe wall with 𝜃 = 56°. The gaussian pulse 𝑔e(𝑥) in the spatial

domain is centered on the excitation line and has a standard deviation of one

sixth of the line length. The gaussian pulse 𝑔t(𝑡) is centered at 𝑡 = 20/𝑓

with a standard deviation of 8/𝑓. The mesh results in 1.2 million degrees

of freedom and the two simulation runs for both flow velocities take about

40 min on an Intel Core i9 processor at 2.3 GHz.

The simulation results are presented in Figs. 6.3a to 6.3c at the time instant

𝑡 = 2𝜏f+20/𝑓 = 68.3 µs, i.e., when the pulse’s center impinges at the top pipe

wall. The acoustic pressure field seen in Fig. 6.3a is a superposition of incident

and reflected fields. Fig. 6.3b compares the acoustic intensity distribution

with and without fluid flow. The result for 𝑣0 = 0 m/s is shown at the bottom,

while the corresponding solution with 𝑣0 = 10 m/s is flipped on top. Lastly,

the acoustic pressure along the pipe wall (𝑦 = 0) is shown in Fig. 6.3c. A

displacement of the two signals of about 0.48 mm can be identified in the

figure. This compares to 2Δ𝑙 = 0.483 mm computed from (6.11) with minimal

computational demands. The points of incidence predicted by ray tracing for

𝑣0 = 0 m/s and 𝑣0 = 10 m/s are marked with vertical lines in Fig. 6.3c.

The good agreement with the FE simulation suggests that the ray tracing model

is well suited to predict the effect of ultrasonic convection. The above analysis

confirms that the ultrasonic beam is actually displaced due to convection

in a Lamb wave-based meter – not merely accelerated, as is conventionally

assumed in UFM. Nonetheless, the beam displacement leads to a change in

time of flight between the transducers, as will be explained next.
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Figure 6.3: FE simulation results of convected ultrasound at 𝑡 = 68.3 µs.

Convective transit time

The total time of flight 𝜏p from sender (S) to receiver (R) changes with the

fluid flow even if the transit time through the fluid medium 𝜏f does not. For

this we inspect the full geometry of the V-path flow meter depicted in Fig. 6.4

and take a closer look at the travel time inside the pipe wall.

S/R

𝑑

𝑏

𝒆𝑧𝒆𝑦

(a) transversal

S R

flow 𝒗0

A0’, S0’

𝐷

2𝑙0 2Δ𝑙

𝒆𝑥

𝒆𝑦
𝜃

𝜃 + 𝛾

(b) axial

Figure 6.4: Flow meter geometry including transducers and wave paths.
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6.2 Time-of-flight model of flow meters

If 𝐷 is the axial distance of the transducers, then the propagation distance

inside the pipe wall will be 𝐷 − 2𝑙, where 𝑙 = 𝑙0 + Δ𝑙 is known from (6.10).

Due to the dispersive behavior of the Lamb waves, the corresponding travel

time differs depending on whether propagation of phases or energy is being

considered. The total time of flight of phase fronts is obtained using (6.10)

and the phase velocity 𝑐p of the QGW, which yields

𝜏p(𝑣0) =
𝐷 − 2𝑏 tan𝜃

𝑐p
+

2𝑏

𝑐f cos𝜃
(1 −

𝑣0

𝑐p
) . (6.12)

Accordingly, the time of flight of the pulse envelope is determined by replacing

𝑐p by the energy velocity 𝑐e. In the following, all equations are written for phase

fronts only and the envelope equations can be obtained by the mentioned

replacement.

The metering principle is based on the change in travel time due to fluid flow.

As conventional [1], we exploit the fact that the role of sender and receiver can

be exchanged and inspect the difference between upstream and downstream

signals, instead of the total time of flight. This differential time of flight is

determined by

Δ𝜏p = 𝜏p(−𝑣0) − 𝜏p(𝑣0) =
4Δ𝑙

𝑐p
=

4𝑏

𝑐f cos𝜃

𝑣0

𝑐p
. (6.13)

The linear dependence on the flow velocity seen above is very advantageous

for the metering system. It should be noted, however, that this is an approxi-

mation resulting from the assumptions of the model, namely homogeneous

and laminar flow. When the flow is inhomogeneous and/or turbulent, it is

still possible to consider an “effective homogeneous flow velocity”, which then

needs to be corrected with the calibration factor 𝐾 (see Subsec. 1.2.4) in order

to obtain correct volumetric flow rates [1]. This represents the conventional

approach taken for flow metering.

6.2.2 Piston type transducer-based flowmeter

The working principle of Lamb wave-based flow meters is different to con-

ventional UFM. Even the differential time of flight derived in (6.13), which

is central to flow metering, differs from the well known standard expression.

This discrepancy arises due to the geometric differences between noninvasive

meters (e.g., Lamb wave-based devices) and invasive setups with piston type

transducers, as will be explained in detail in the next section. Before doing so,

we shall introduce the piston type devices in the following.
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6 Modeling Lamb wave-based flow meters

The piston transducers radiate normally to their surface into the pipe’s interior,

as depicted in Fig. 6.5. According to (6.7), the transit time of a phase point 𝒙p

through the fluid from sender (S) to receiver (R) is given by

𝜏f =
𝐿(𝑣0)

𝑣p(𝑣0)
, (6.14)

where 𝐿 denotes the flow-dependent ray path length. Considering that for

the piston type transducer 𝐿piston = 𝐿0/ cos 𝛾 and using (6.2), the actual

propagation distance is 𝐿piston = 𝐿0𝑣p/(𝑐f + 𝑣0 sin𝜃). According to (6.14) the

resulting transit time through the fluid is obtained for the piston transducer

setup as

𝜏f,piston =
𝐿piston

𝑣p
=

𝐿0

𝑐f + 𝑣0 sin𝜃
. (6.15)

S

R

flow 𝒗0

𝐿0

𝐿piston
𝒔

𝒗p

𝑏

𝑙0

𝜃
𝛾

.

.

Figure 6.5: Geometry of conventional UFM with piston type transducers.

Conventionally, an effective wave speed [1, 2, 14] formalism is adopted in place

of the above derivation. The idea consists in projecting the ray velocity onto

the original propagation direction 𝒆p, i.e., 𝒗p ⋅ 𝒆p = 𝑐f + 𝑣0 sin𝜃. This wave

speed will result in the same transit time as given in (6.15) when using the

fixed distance 𝐿0 between the transducers. The reason why the effective wave

speed yields the correct result is that the transducer surface is aligned with

the phase fronts and the actual ray path is irrelevant, i.e., it does not matter

which point on the phase front is actually considered because it impinges on

the transducer’s surface everywhere at the same time. It is important to stress

that this transit time is, strictly speaking, only valid for piston-type transducer

setups. We conclude that – in contrast to the Lamb wave-based flow meters

– the transit time of an ultrasonic pulse through the pipe’s interior changes

with the fluid flow velocity, directly enabling its measurement.
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6.2 Time-of-flight model of flow meters

6.2.3 Comparison of flowmeter setups and models

The relevant geometric differences in the two setups, i.e., piston transducers

vs. Lamb wave transducers, will be explained in the following. Moreover, the

time-of-flight model for Lamb wave-based meters presented in Subsec. 6.2.1

will be compared to the conventional effective wave speed model.

Geometry of the two setups

The setups of UFM with piston type transducers and Lamb wave transducers

are very similar, yet the metering principles have been shown above to be

quite different. While for piston type transducers the flow has barely any

effect on the ray path length, it does for Lamb wave transducers. This is due

to the different geometries of the receiving elements, which are shown in

comparison in Fig. 6.6.

Δ𝑙

Δ𝐿

𝐿0

𝒗p ⋅ 𝒆p𝜏f,piston(𝑣0) = 𝒄f𝜏f

𝒗p(𝑣0)𝜏f,piston(𝑣0)

𝒗p(𝑣0)𝜏f

𝜃
.

𝜃 + 𝛾90° + 𝛾

piston surface

pipe surface

equidistant

from source

non-convected

ray

convected ray

Figure 6.6: Comparison of ray path lengths using piston type transducers vs. Lamb wave-based

transducers (pipe wall is the radiating element).

According to the law of sines, the difference Δ𝐿 = 𝐿 − 𝐿piston in ultrasonic

path lengths of Lamb and piston type transducer setups is determined by

Δ𝐿 = |𝒗p| (𝜏f − 𝜏f,piston) (6.16)

=
𝑣0

𝑐f
𝑏

tan𝜃

cos 𝛾
≈
𝑣0

𝑐f
𝑏 tan𝜃 , (6.17)

where the approximation holds for small angles 𝛾, i.e., 𝑣0 ≪ 𝑐f, and (6.11) has

been used. We see that Δ𝐿 is by no means negligible. Contrary to the piston

transducer setup, where 𝐿piston = 𝐿0/ cos 𝛾 ≈ 𝐿0, the Lamb wave-based setup

exhibits a significant increase in the ray path length due to the fluid flow, i.e.,

𝐿 ≠ 𝐿0. From a geometrical point of view, the difference in the two setups

lies in the orientation of the transducer’s surface to the radiation direction,

leading to differences with regard to transit path and transit time.
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6 Modeling Lamb wave-based flow meters

Ray tracing vs. effective wave speed

The time-of-flight model derived in Subsec. 6.2.1 is based on simple unaltered

ray tracing. Instead, an effective wave speed formalism is traditionally used

in flow metering systems. The question arises, whether it is possible to apply

this framework to Lamb wave-based flow meters.

As already mentioned, the effective wave speed is obtained by projecting the

ray velocity onto the original propagation direction, i.e., 𝒗p ⋅ 𝒆p = 𝑐f+𝑣0 sin𝜃.

Using this wave speed, it is possible to determine the transit time 𝜏eff
f to the

point where the wave would be reflected without fluid flow, i.e., the 𝐿0 ray

path in Fig. 6.2. This transit time, given by

𝜏eff
f =

𝐿0

𝑐f + 𝑣0 sin𝜃
, (6.18)

is seen to be flow-dependent, which is in disagreement with the convected ray

model in (6.8). Moreover, after some algebra, the corresponding upstream-

downstream differential time of flight can be written as [1]

Δ𝜏eff
p =

4𝑏

cos𝜃

𝑣0 sin𝜃

(𝑐2f − 𝑣
2
0 sin2 𝜃)

. (6.19)

Comparing (6.19) to (6.13), we see that the two models yield different results –

one is linear, while the other is hyperbolic in 𝑣0.

The two models differ in the treatment of the wave propagation on the segment

Δ𝑙. The situation is sketched in Fig. 6.7, where the effective ray impinges on

the plate at 𝑙0 at time 𝜏eff
p , whereas the convected ray impinges at a later time 𝜏p

on 𝑙0 + Δ𝑙. While (6.19) assumes that the wave propagates with 𝑐p = 𝑐f/ sin𝜃

inside the plate, (6.13) instead accounts for the fact that the wave is still being

convected inside the fluid and propagates with the trace velocity 𝑐f/ sin𝜃+𝑣0

in axial direction. As a consequence, the “effective ray” reaches 𝑥 = 𝑙0 + Δ𝑙 at

time 𝜏eff
p +

Δ𝑙

𝑐p
, which is slightly later than the convected ray because in practice

Δ𝑙 is substantially smaller than one wavelength.

From a mathematical point of view, the differential time of flight given in (6.19)

differs from the one in (6.13) due to the term𝑣20 sin2 𝜃 in the denominator. Note

that this term is conventionally disregarded under the assumption that 𝑣0 ≪

𝑐p [1]. Neglecting this term and considering that 𝑐p = 𝑐f/ sin𝜃 reduces the

effective wave model to the convected ray model. For Lamb wave-based flow

meters, disregarding the mentioned term does not represent an approximation.

It translates the “imprecise” model into the actual model.
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convected ray
ray

𝑙0 𝑙0 + Δ𝑙

.

Figure 6.7: Comparison of phase fronts: two different trace velocities are assumed over the range

Δ𝑙. “Effective ray”: 𝑐p = 𝑐f/ sin𝜃; convected ray: 𝑐p = 𝑐f/ sin𝜃 + 𝑣0. In practice Δ𝑙 ≪ 𝑐p/𝑓,

leading to small deviations between the two models.

Using the effective wave model without the mentioned simplification leads to

errors. Using (6.19) and (6.13) results in a relative deviation between the two

models of
Δ𝜏eff

p − Δ𝜏p

Δ𝜏p
=

𝑣20

(𝑐2p − 𝑣
2
0)
≈ (

𝑣0

𝑐p
)

2

, (6.20)

where the approximation holds for 𝑣0 ≪ 𝑐p. In practice, this deviation is in

the order of 1 · 10−4 and, therefore, negligible. Nonetheless, the convected ray

model should be preferred because:

� it is the physically meaningful model,

� it reveals the linear dependence of Δ𝜏 on 𝑣0,

� it yields mathematically simpler expressions, and

� it is also valid for the ultrasonic pulse envelope.

6.3 Incidence and reflection from the pipewall

The radiated ultrasonic beam propagates through the pipe and then impinges

on the opposite pipe wall, where it partially reflects and partially couples into

a QGW, e.g., a leaky Lamb wave. This coupled process of “incidence” and

“reflection” will be modeled in this section as inspired by Jia et al. [171] but

using a pressure formulation. All field quantities are thereby assumed to vary

as e−i𝜔𝑡.

6.3.1 Excitation of a leaky Lambwave by an incident
acoustic beam

The goal is to obtain the axial variations 𝑎𝑛(𝑥) of the wave inside the pipe

wall/plate due to an acoustic pressure 𝑝i(𝑥) incident on the plate surface.
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6 Modeling Lamb wave-based flow meters

The resulting 𝑎𝑛(𝑥) is purely a consequence of the spatial distribution of the

incident beam 𝑝i(𝑥) and the considered mode. It should be remarked that it

is not allowed to disregard the fluid-structure interaction at this point. This

means that the pressure on the plate’s surface is a consequence of the incident

and reflected pressure as well as the radiated acoustic field of the thereby

generated QGW [171].

We consider a QGW propagating to the right. The field variations 𝑎𝑛(𝑥) are

known to start from zero at the left edge of the exciting region and increase

thereon, see (3.29). This means that the plate is initially not under motion and

the incident acoustic beam suffers – at first – a sound hard reflection [111], i.e.,

the pressure is doubled. The motions of the plate increase along 𝑥, thereby

generating a leaky pressure field that adds to the total pressure. Overall, the

pressure at the plate’s boundary may then be written [111, 171]

𝑝(𝑥) = 2𝑝i(𝑥) + 𝑝l𝑛(𝑥) , (6.21)

where 𝑝l𝑛 is the leaky pressure field. If the leaky Lamb wave radiates under an

angle 𝜃𝑛, the resulting acoustic pressure will be

𝑝l𝑛(𝑥) = −
𝑍f

cos𝜃𝑛
𝑣𝑦𝑛𝑎𝑛(𝑥) , (6.22)

where the negative sign is due to radiation in −𝒆𝑦, the acoustic impedance

𝑍f = 𝜌𝑓𝑐f and 𝑣𝑦𝑛 denotes the 𝑦-component of the mode’s velocity eigenvector

at the plate-fluid boundary, i.e., 𝑣𝑦𝑛 = 𝒆𝑦 ⋅ 𝒗𝑛(𝑦 = −ℎ/2). The subindex 𝑛

for the modal variables is dropped henceforth for conciseness.

The corresponding hydrostatic stress state acting on the plate’s surface is

𝑻 = −𝑝(𝑥)𝑰, see Subsec. 2.1.4. The traction on the upper plate surface with

normal vector −𝒆𝑦 is then given by 𝒕(𝑥) = −𝒆𝑦 ⋅ 𝑻 = 𝑝(𝑥)𝒆𝑦. According to

(3.26), the total pressure (6.21) at the plate’s surface leads to a source 𝑓s(𝑥)

seen by the waveguide mode, which may be written as

𝑓s(𝑥) = 𝑣
∗
𝑦𝑝(𝑥) = 2𝑣

∗
𝑦𝑝i(𝑥) −

𝑍f

cos𝜃
|𝑣𝑦|

2𝑎(𝑥) . (6.23)

With this, the mode’s axial variation according to (3.29) is governed by

(𝜕𝑥 − i𝑘′𝑥)𝑎(𝑥) =
𝑣∗𝑦𝑝i(𝑥)

2𝑃
, (6.24)

132



6.3 Incidence and reflection from the pipe wall

where we use 𝑘′𝑥 = 𝑘𝑥 + i𝛼′, and the abbreviation

𝛼′ =
𝑍f

4𝑃 cos𝜃
|𝑣𝑦|

2 , (6.25)

which is seen to represent an estimate for the radiation rate, i.e., axial attenua-

tion ℑ𝑘𝑥 of the QGW, compare to Subsec. 3.2.8. Therefore, even if the wave

field of the free plate mode is being used for the computation, radiation losses

are being considered – as it needs to be. The governing equation for 𝑎(𝑥) is of

the same form as (3.28) and the solution can be taken from (3.29), i.e.,

𝐴(𝑥) =
𝑣∗𝑦

2𝑃
e−𝛼

′𝑥∫
𝑥

−∞

𝑝i(𝜉) e−i𝑘′𝑥𝜉 d𝜉 , (6.26)

where we include the attenuation in the “modal envelope” 𝐴, so that the

axial variation is given by 𝑎(𝑥) = 𝐴 ei𝑘𝑥𝑥. Comparing to (3.29), we conclude

that the interaction of the prescribed external field and radiated field can be

considered by merely using an appropriate complex wavenumber instead of

the real wavenumber of the free plate mode. Note that the obtained result is

an approximation because it assumes that the modes of the free plate are a

good approximation to the QGWs of the fluid-coupled plate.

As a simple but insightful example, we begin with an incident acoustic pressure

with matching axial wavenumber, i.e., its wavenumber along 𝑥 corresponds

to the Lamb wave’s wavenumber 𝑘𝑥. Moreover, it shall exhibit a rectangular

envelope. The incident pressure is, therefore, 𝑝i(𝑥) = 𝑝0 ei𝑘𝑥𝑥 on 𝑥 ∈ [0, 𝑤]

and zero otherwise. The situation is sketched in Fig. 6.8a. Inserting 𝑝i into

(6.26), we see that in the exciting region 𝐴(𝑥) =
𝑣∗𝑦𝑝0

2𝛼′𝑃
(1 − e−𝛼

′𝑥) and for

𝑥 > 𝑤, 𝐴(𝑥) =
𝑣∗𝑦𝑝0

2𝛼′𝑃
(e𝛼

′𝑤−1) e−𝛼
′𝑥. The resulting envelope 𝐴(𝑥) and axial

variations 𝑎(𝑥) are both shown in Fig. 6.8b. Thereby, the modal field (𝒗, 𝑻)

has been normalized such that the waves carry unit power per waveguide

width, i.e., 𝑃 = 1 W/m.

If radiation losses had been disregarded, the mode’s amplitude would increase

linearly with the excitation length [70]. This will no longer be the case when

changing from real to complex valued 𝑘𝑥. Instead, the guided wave’s enve-

lope is seen to exponentially approach a limiting value of 𝐴(𝑥) →
𝑣∗𝑦𝑝0

2𝛼′𝑃
, which

is the case when incoming and radiated power are balanced [111]. Outside

the exciting region, the QGW then attenuates exponentially, as would be

expected. Note that the behavior of leaky wave excitation is similar to tran-

sient phenomena in resonant systems. This analogy was already noted by
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Figure 6.8: Rectangular acoustic beam incident onto a brass plate under the A0’ critical angle.

The dimensionless modal envelope 𝐴(𝑥) and the dimensionless axial variations 𝑎(𝑥) are

w.r.t. a modal field with 𝑃 = 1 W/m. Parameters: 1 mm thick brass plate coupled to water,

frequency 𝑓 = 1 MHz, angle of incidence 𝜃 = 56°, attenuation 𝛼′ = 53 rad/m, tracing beam

width 𝑤 = 4.5 cm.

Cremer [172], although Schoch [116] remarks that the two phenomena are not

exactly equivalent.

There exists an optimal beam width under which the coupling into the plate

is most efficient [111]. This is expected because the power coupled into the

plate reaches saturation with increasing 𝑤, while the power carried by the

incident beam does not. The maximum power contained in the QGW is found

at 𝑥 = 𝑤 and its value is 𝑃(𝑤) = 𝐴∗(𝑤)𝐴(𝑤)𝑃, where 𝑃 denotes the power for

𝐴 = 1, as before. On the other hand, the total power carried by the incident

acoustic beam is 𝑃acou =
𝑝20𝑤 cos𝜃i

2𝑍f
, where 𝑤 cos𝜃i is the width of the beam

incident under angle 𝜃i. The efficiencywith which acoustic energy is converted

to a QGW is then determined by 𝜂(𝑤) =
𝑃(𝑤)

𝑃acou(𝑤)
=

2

𝛼′𝑤
(1 − e−𝛼

′𝑤)2 [111].

The maximum is found at 𝑤opt ≈ 1.26/𝛼′ with 𝜂opt ≈ 81 %. This result is

a direct consequence of the nature of leaky fields, namely, inhomogeneous

plane waves (see Subsec. 2.3.1 and 3.2.7) – which are not “matched” to the

incident homogeneous plane wave.

A more realistic example would be an incident pressure pulse with Gaussian

envelope [171] as sketched in Fig. 6.9a. The pressure at the plate’s surface is

𝑝i(𝑥) = 𝑝0 e
−
1

2
(
𝑥

𝑤
)2

ei𝑘𝑥𝑥, where 𝑤 is its 1-sigma width along 𝑥. According to

(6.26), the excited QGW’s envelope is then given by

𝐴(𝑥) =
𝑣∗𝑦𝑝0

2𝑃
e−𝛼

′𝑥∫
𝑥

−∞

e
−
1

2
(
𝜉

𝑤
)2

e−i𝑘′𝑥𝜉 d𝜉 . (6.27)
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The integration was performed numerically using the Chebfun toolbox [173]

and the result is depicted in Fig. 6.9b for 𝑤 = 5.66 mm (𝛼′𝑤 = 0.3). The

envelope 𝐴 of the excited A0 wave reaches a maximum and then gradually

transitions into the exponential decay expected due to leakage.
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Figure 6.9: Ultrasonic beam with Gaussian envelope incident onto a plate under the A0’ critical

angle. The dimensionless modal envelope 𝐴(𝑥) and the dimensionless axial variations 𝑎(𝑥)

are w.r.t. a modal field with 𝑃 = 1 W/m. Parameters: 1 mm thick brass plate coupled to water,

frequency 𝑓 = 1 MHz, angle of incidence 𝜃i = 56°, attenuation 𝛼′ = 53 rad/m, normalized

1-sigma tracing beam width 𝛼′𝑤 = 0.3.

6.3.2 Nonspecular reflection from the pipewall

In addition to the wave field inside the pipe wall, the acoustic pressure in the

fluid is also fully determined by the computation presented in the previous

section [171]. Remember that the axial variations of the leaky Lamb wave

are 𝑎(𝑥) = 𝐴(𝑥) ei𝑘𝑥𝑥, with the modal envelope 𝐴 given in (6.26). The leaky

pressure field is then obtained using (6.22) and the total pressure field at the

plate’s boundary through (6.21).

The acoustic field is discussed by virtue of the incident Gaussian pressure

pulse example calculated in the previous section. The resulting A0’ wave

envelope was already shown in Fig. 6.9. The corresponding acoustic pressure

at the plate’s boundary is displayed in Fig. 6.10. The reflected pressure field

is the superposition of the specularly reflected beam 𝑝i and the leaky wave

pressure 𝑝l. These two components are 180° out of phase [111], leading to

wave field extinction where they exhibit the same envelope. This manifests

in a zero-crossing of the pressure’s envelope. Left to the crossing point, the

pressure is dominated by the specular reflection and is in phase with it. On

the other hand, to the right of the crossing point, it is dominated and in phase

with the leaky field.
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Figure 6.10: Nonspecular reflection from the pipe wall: (a) the reflected pressure is a con-

sequence of a specularly reflected beam interfering with the leaky wave field; (b) the total

pressure acting on the plate’s surface is composed of the incident and reflected pressure. The

parameters are taken from Fig. 6.9.

Effects due to interference of a specular reflection with a leaky field are denoted

as nonspecular reflection [171, 174]. The first reports in ultrasonics were due

to Schoch [116, 175], where they were already interpreted as an interaction

with free waves in the plate. Roughly speaking, three effects can be observed:

(i) an axial displacement of the beam, (ii) a region of wave extinction and

(iii) widening of the beam. The axial displacement of the reflected beam’s

maximum with respect to the one of the specular reflection is known as the

Schoch displacement [174, 176]. The larger the incident beam width-radiation

rate product𝑤𝛼′, the more energy concentrates in the leaky field and the more

pronounced is the Schoch displacement [174]. On the other hand, whenever

the incident beam is sufficiently narrow, a region of acoustic extinction will

be found [174] – as in Fig. 6.10.

The nonspecular reflection was validated using a FE simulation. The used

geometry and BCs are explained in Fig. 6.11a, which also presents the resulting

ultrasonic field. The region of extinction is clearly visible in the reflected

beam. With the FE simulation it is only possible to separate the reflected and

incident field components geometrically. Especially the logarithmic scale of

the pressure field illustrates clearly the widening of the nonspecularly reflected

beam with respect to the incident beam. This effect can be exploited to obtain

beams with a very narrow angular spectrum [116], albeit inhomogeneous plane

waves are thereby generated. By reversing this process, it is possible to achieve

beam narrowing [101].
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Figure 6.11: FE simulation of a nonspecularly reflected ultrasonic beam: (a) pressure and

pressure level fields. (b) The total pressure along the plate’s surface shows excellent agreement

to the modal solution (already presented Fig. 6.10). The parameters are taken from Fig. 6.9.

A direct comparison of the total acoustic pressure at the plate’s surface to

the one computed via modal expansion is provided in Fig. 6.11b. The results

nearly coincide, demonstrating the accuracy of the modal computation for

the current example1. The modal computation has a significant conceptual

advantage: it reveals the nature of the nonspecular phenomena in terms

of specular reflections and leaky waves [171]. Moreover, it has a significant

computational advantage, as only the plate’s surface needs to be discretized.

We conclude that the combination of guided/leaky waves and modal expansion

leads to a very natural setting to describe nonspecular phenomena.

Nonspecular reflections of ultrasound were made visible as part of [S9] using

Schlieren photography, see Sec. 5.3. An ultrasonic transducer (V302-SU, Pana-

metrics) with 25 mm aperture and 1 MHz center frequency was utilized to

illuminate a 3 mm thick steel plate immersed in water. The processed pho-

tographs are presented in Fig. 6.12. The null field in the nonspecularly reflected

field is clearly visible, both for incidence under the A0” angle as well as the S0”

wave angle. The widening of the beam can also be observed.

1 The accuracy depends on the locus on the dispersion curves. Good accuracy is expected

when the eigenfunction and wavenumber of the fluid loaded plate are comparable to the

ones of the free plate.
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Figure 6.12: Schlieren photographs of ultrasonic beams reflected nonspecularly from a 3 mm

thick steel plate in water.∗

∗ Experimental data obtained by Schmid [S9]. Post-processing and visualization by the author.

Effects on the Lambwave-based flowmetering system

Some remarks with regard to Lamb wave-based UFM and nonspecular reflec-

tions are in order. Depending on whether the signal portion to the left or to

the right of the zero crossing of the envelope is evaluated, the time-of-flight

model of phase fronts might need to be adjusted by one half-period in order

to conform to the 180° phase shift in the leaky field region [31]. Note, however,

that the effects of reflection are reciprocal, while the convection of ultrasound

is not. This means that changes in phase due to reflection will not appear in

the differential time of flight given in (6.13) and do, consequently, not affect

the flow measurement directly.

Nonetheless, nonspecular reflection does affect the flow metering system in

other ways. To assess this, the analysis can be extended to cover the entire

V-path. After reflection from the bottom pipe wall, the beam propagates back

towards the upper pipe wall and impinges on it with an axial displacement

of 2𝑙, see Fig. 6.4. The generated QGW can again be computed with (6.26)

after having obtained 𝑝r from the first reflection. Thereby, 𝑝r constitutes

the pressure incident onto the top pipe wall. This has been done for the

exponential beam example given in Fig. 6.9. The result is shown in Fig. 6.13

together with the original and the nonspecularly reflected pressure signals.

The beam’s axial displacement has been omitted for the sake of comparison,

i.e., 𝑎(𝑥−2𝑙) is actually plotted. Note that the signal 𝑎(𝑥) reaching the receiver

is much wider then the initial Gaussian pulse. In this example, its maximum

is displaced by about 3 cm. Note that the signal reaching the receiver is highly
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dependent on the initially emitted pressure distribution and a per-case study

is required.
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Figure 6.13: V-path signal resulting from an emitted Gaussian pulse. “𝑝i bottom” is the initially

emitted Gaussian, which is incident onto the bottom pipe wall. After nonspecular reflection,

the pressure “𝑝i top” reaches the upper pipe wall and excites an A0’ wave with axial field “𝑎

top” and envelope “𝐴 top”.

The consequences of nonspecular reflections on the UFM system can be

summed up as follows: If the sender and receiver are arranged in a V-path,

the local extinction and the widening of the beam upon reflection will lead

to a decreased signal amplitude and, thus, lower signal-to-noise ratio at the

receiver [1]. The Schoch displacement and widening of the reflected beam

affects the optimal position of the receiver. This either needs to be considered

in the flow meter design or the nonspecular reflection should be avoided. The

latter is achieved by choosing the upper and lower pipe walls to be either (i)

of different thickness or (ii) non-parallel.
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The upcoming sensitivity studies reveal the dependence of the Lamb wave-

based UFM on its parameters. This information is pertinent for the choice of

a good operating point, i.e., the desired nominal parameter values. Further-

more, it reveals which disturbances are the most relevant ones and it yields a

framework for active compensation of undesired effects.

7.1 Flowmeter sensitivity to flow rate

The quantity acquired by the flow meter is the differential time of flightΔ𝜏p(𝑣0),

which depends on the sought volumetric flow rate 𝑄 through 𝑣0 = 𝑣0 =
𝑄

𝐾𝑏𝑑
.

The model needs to be inverted in order to calculate the flow rate correspond-

ing to a given Δ𝜏p. This is achieved by inserting 𝑣0 from (6.13) into (1.3),

yielding

𝑄 = 𝒮Δ𝜏p , (7.1)

with the sensitivity of the flow meter defined by

𝒮
def
=

1

4
𝐾𝑑𝑐f𝑐p cos𝜃 . (7.2)

Note that the smaller 𝒮, the larger is the physical metering effect for a given 𝑄

because the measured time delay is Δ𝜏p = 𝑄/𝒮.

Measurement error analysis is performed in this chapter. In general, errors

occur either due to imprecise acquisition of Δ𝜏p (electronics and signal pro-

cessing) or unexpected deviations in the sensitivity 𝒮 (ultrasonic system). The

latter effect is studied in Sec. 7.2 through 7.4. The thus gained knowledge

is exploited in Sec. 7.5 to include the effect of temperature into the above

sensitivity, which then becomes 𝒮(𝒯).

7.2 Flow rate cross-sensitivities

Deviations between the actual and assumed meter sensitivity 𝒮 are a result

of uncertainties in the system parameters, i.e., 𝐾, 𝑑, 𝑐f, 𝑐p, or unexpected

changes therein. They directly lead to errors in the measured flow rate, which

are denoted as interference errors and are said to be due to cross-sensitivities.

These are studied in-depth in the following. The analysis aids in choosing an
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7 Sensitivity and interference errors

appropriate operating point, which would ideally be unaffected by parameter

changes.

The relative measurement error due to a change Δ𝑝 of an arbitrary parameter

from its assumed nominal value 𝑝 is given by

𝜖
𝑝
𝑄

def
=

𝑄m − 𝑄

𝑄
= −

Δ𝑄

𝑄
|
𝑝

≈ −
𝜕𝑄

𝜕𝑝
|
𝑝

Δ𝑝

𝑄
= −

𝜕𝒮

𝜕𝑝
|
𝑝

Δ𝑝

𝒮
, (7.3)

where𝑄 and𝑄m are the actual and the measured flow rate, respectively, and the

approximation is the first order Taylor expansion. This means that differential

changes are being considered for now. Large changes will also be considered

where necessary. According to (7.3), it is irrelevant whether the analysis is

performed using either 𝑄 or 𝒮.

The ratio of 𝜖
𝑝
𝑄 to the relative change of the parameter, i.e., 𝜖𝑝 =

Δ𝑝

𝑝
, given by

𝜖
𝑝
𝑄

𝜖𝑝
= −

𝑝

𝑄

𝜕𝑄

𝜕𝑝
|
𝑝

= −
𝑝

𝒮

𝜕𝒮

𝜕𝑝
|
𝑝

, (7.4)

is especially advantageous as it is independent of Δ𝑝. This differential relative

cross-sensitivity of the sensor will be studied systematically for all of the

parameters. Thereby, the inhomogeneity of the leaky wave field is disregarded

and the approximation 𝜃 ≈ arcsin(
𝑐f

𝑐p
) is utilized1 to eliminate 𝜃. Simple

expressions for the cross-sensitivities can then be obtained from (7.4) and

(7.2), namely2

𝜖
𝑐p

𝑄

𝜖𝑐p

=
−𝑐2p

𝑐2p − 𝑐
2
f

,
𝜖
𝑐f
𝑄

𝜖𝑐f

=
2𝑐2f − 𝑐

2
p

𝑐2p − 𝑐
2
f

,
𝜖𝑑𝑄

𝜖𝑑
= −1 ,

𝜖𝐾𝑄

𝜖𝐾
= −1 . (7.5)

While the wave speed 𝑐f of the fluid is fixed by the medium to be measured,

the phase velocity 𝑐p can be adjusted by choice of the leaky Lamb wave and the

operating frequency 𝑓. The cross-sensitivities to 𝑐p and 𝑐f are plotted in Fig. 7.1

as a function of the nominal phase velocity. The sensitivity to changes in 𝑐p is

observed to steadily decrease with higher nominal phase velocity 𝑐p. With

regard to the sensitivity on 𝑐f, a sweet spot exhibiting zero local sensitivity

1 Strictly speaking, 𝜃 additionally depends on the field’s inhomogeneity ℑ𝑘, or alternatively

the radiation rate ℑ𝑘𝑥, see Subsec. 3.2.8.

2 Note that cos arcsin
𝑐f

𝑐p
= √1 −

𝑐2f

𝑐2p
.
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Figure 7.1: Cross-sensitivity to 𝑐p and 𝑐f as a function of the nominal phase velocity of the

excited leaky Lamb wave (nominal 𝑐f = 1.48 mm/µs).

is found at 𝑐p = √2𝑐f. This operating point could be achieved using the A0’

wave at about 700 kHz mm in a steel pipe.

The preceding discussion shows that the accuracy of the metering system

with parameter uncertainties is dependent upon the chosen operating point.

The phase velocity 𝑐p at which the device is operated is essential to control

its cross-sensitivities. Other parameters, for instance temperature, also lead

to interference errors. These act on the system through one or more of the

parameters considered so far. Fig. 7.2 displays an error chain, i.e., which

parameters influence other parameters. Most of them act on the phase velocity

and, hence, this quantity is again of central importance.

thickness ℎ

frequency 𝑓

material parameters 𝒄, 𝜌

dezincification

deposition of a layer

temperature 𝒯

pipe inner depth 𝑑

𝑐p

𝑐f

𝑑

𝒮 𝑄

Figure 7.2: Error dependence diagram.

Parameters that act on 𝑐p will collectively be denoted as waveguide param-

eters and are discussed more closely in Sec. 7.3. Furthermore, the effect of
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7 Sensitivity and interference errors

temperature is essential because the water meter should be operational in a

very wide temperature range from 0 °C to 100 °C, for heat meters even up to

150 °C. This is treated in Sec. 7.4 and 7.5.

7.3 Waveguide parameter cross-sensitivities

The waveguide parameters affect the phase velocity of the leaky wave excited

inside the pipe wall. Uncertainties, tolerances and environmental circum-

stances lead to deviations in the pipe’s wall thickness, material parameters,

excitation frequency, etc., from the corresponding assumed nominal values.

Each of the effects is discussed individually in the following.

7.3.1 Thickness and frequency: Abrasion and
manufacturing tolerances

Manufacturing tolerances lead to uncertainties in the actual pipe wall thick-

ness ℎ. Moreover, the thickness might change over time due to abrasion and

thermal expansion. This leads to changes in the phase velocity of the excited

leaky Lamb wave. For a single layer pipe wall, the dispersion curves depend

on the frequency-thickness product 𝑓ℎ (see Subsec. 3.1.2), i.e., 𝑐p = 𝑐p(𝑓ℎ),

relative changes in frequency have the same effect as in thickness.

Three different approaches to obtain the sensitivity of the phase velocity, i.e.,
𝜕𝑐p

𝜕𝑓
and

𝜕𝑐p

𝜕ℎ
, may be thought of: (i) implicit differentiation of the character-

istic equation, (ii) numerical differentiation of the dispersion curves, or (iii)

exploiting the relation to the group velocity. The latter is obtained from (2.91),

wherein the phase and group velocities are both scalars in the Lamb wave case.

A change of variable in the differentiation and resorting terms results in

𝜖
𝑓
𝑐p

𝜖𝑓

def
=

𝑓

𝑐p

𝜕𝑐p

𝜕𝑓
=
𝑐g − 𝑐p

𝑐g
=
ℎ

𝑐p

𝜕𝑐p

𝜕ℎ

def
=

𝜖ℎ𝑐p

𝜖ℎ
. (7.6)

These frequency-dependent sensitivities are exemplarily plotted for a brass

plate in Fig. 7.3a. Thereby, 𝑐g = 𝑐e has been assumed and the energy velocity

is used for the computations to avoid differentiation of the curves.

The frequency is a property of the employed excitation signal and can dynam-

ically be adjusted during operation. In principle, this could be harnessed to

compensate for other changes in the waveguide parameters. Evidently, this

method will only work if a dispersive wave is used, which is reflected in the
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7.3 Waveguide parameter cross-sensitivities

above sensitivity expression, where the group and phase velocities need to

differ in order to obtain a non-zero sensitivity to frequency.

7.3.2 Mechanical parameters: Material uncertainty and aging

The material parameters are usually not known exactly and may vary from

batch to batch. Moreover, the parameters might change in long-time processes,

i.e., aging. We are interested in the consequences for the guided wave’s phase

velocity. For this end, the volume perturbation formula given in (3.32) can

be used. For small changes in the material parameter, the approximations

𝒗′ = 𝒗 and 𝑺′ = 𝑺 can be made [41]. This yields the relative changes in phase

velocity as

𝜖mat
𝑐p

def
=

Δ𝑐p

𝑐p
= −

Δ𝑘𝑥

𝑘𝑥
= −

𝑐p

4𝑃
∫
ℎ/2

−ℎ/2

Δ𝜌𝒗∗ ⋅ 𝒗 − 𝑺∗ ∶ Δ𝒄 ∶ 𝑺d𝑦 . (7.7)

The first term yields the relative sensitivity to changes in mass density, namely

𝜖
𝜌
𝑐p

𝜖𝜌

def
=

𝜌

Δ𝜌

Δ𝑐p

𝑐p
= −

𝑐p

2𝑃
∫
ℎ/2

−ℎ/2

1

2
𝜌𝒗∗ ⋅ 𝒗d𝑦 = −

1

2

𝑐p

𝑐e
. (7.8)

Thereby, we have used the definition of energy velocity given in (3.15) and we

have assumed equipartition of energy according to (2.53).

Next, changes in stiffness are examined. These are due to the second term

in (7.7). For this we note that the stiffness tensor of isotropic materials can

be factorized as 𝒄 = 𝐸𝑵(𝜈), where 𝐸 is the Young’s modulus and 𝑵 is a 4th

order tensor depending only on the Poisson’s ratio 𝜈. Taking the change in

stiffness to be of the form Δ𝒄 =
Δ𝐸

𝐸
𝒄 = Δ𝐸𝑵(𝜈), the sensitivity due to changes

in Young’s modulus are determined by

𝜖𝐸𝑐p

𝜖𝐸

def
=

𝐸

Δ𝐸

Δ𝑐p

𝑐p
=
𝑐p

4𝑃
∫
ℎ/2

−ℎ/2

𝑺∗ ∶ 𝒄 ∶ 𝑺d𝑦 =
1

2

𝑐p

𝑐e
. (7.9)

Again, the definition of energy velocity (3.15) and equipartition of energy (2.53)

has been exploited therein.

The resulting frequency-dependent sensitivities to the mechanical parameters

of a brass plate are exemplarily depicted in Fig. 7.3b. It is remarked that the

relative sensitivities to mass and Young’s modulus are equal but of opposite

sign. The phase velocity of forward waves increases with the Young’s modulus
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but decreases with mass. The opposite holds for backward waves. Note that

the S2b wave exhibits sensitivities of about > 10 and is outside the range of

Fig. 7.3b.
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Figure 7.3: Relative changes in phase velocity due to frequency, thickness and material parame-

ters (brass plate).

Changes in the Poisson’s ratio can also be accounted for using (7.7). Due to

its tensorial form, it does not reduce to a simple expression in terms of phase

and energy velocity. Numerical calculations have been performed and the

corresponding relative sensitivities are all < 0.3 %/%, except at the cut-off

frequencies.

The full nonlinear behavior due to large perturbations has been obtained by

computing the waveguide problem for a set of material parameters. A very

good agreement to the above linear predictions is found for up to about 10 %

relative change in the material parameters (brass plate). We conclude that

the linear behavior is sufficient for our purposes.

7.3.3 Deposited layer: Scaling and dezincification

UFMs for potable water supply stay in operation for extended periods of time.

Thick layers of extraneous material may form on the inner pipe wall. This

occurs by sedimentation of particles in suspension or by precipitation of

dissolved substances. Two relevant phenomena leading to layer buildup will

be analyzed in the following: scaling and dezincification.

Perturbation theory according to Subsec. 3.1.9 could be used in case of very

thin layers [41], i.e., when the deposited layer thickness ℎl fulfills 𝑘𝑥ℎl ≪ 1. For

thick layers – which can be the case for both scaling as well as dezincification

– perturbation theory is no longer valid. Instead, the exact mechanics are
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7.3 Waveguide parameter cross-sensitivities

considered to analyze the effect of a deposited layer. That is, wave propagation

in the bi-layered waveguide as depicted in Fig. 7.4 is considered. Thereby, we

assume the formation of an isotropic and homogeneous layer. Modeling of

multi-layered waveguides has been included in the developed EDAT toolbox.

Each layer is modeled as described in Subsec. 4.2.2 and coupled to the adjacent

layer by imposing the interface conditions given in (2.25). For implementation

details, refer to Refs. [P3, 121, 127].

ℎ

ℎl

pipe wall

deposited layer

water

𝒆𝑥
𝒆𝑦

𝒆𝑧

Figure 7.4: Pipe wall with deposited layer (e.g., limescale) in contact with water.

Fluid loading is included into the multi-layered mechanical waveguide using

the method developed in Subsecs. 3.2.3 and 4.2.2. In this way, valuable infor-

mation about the radiation rate into the pipe’s interior under the effect of a

deposited layer is obtained in addition to the phase velocity.

Scaling: formation of a calcite layer

Of particular interest is the precipitation of dissolved salts, mainly of cal-

cium and magnesium. Thereby, a hard layer is deposited on the pipe that

is commonly referred to as limescale, the material is also called limestone,

while the process of formation is denoted as scaling or fouling. Limescale

mostly consists of calcium carbonate in the form of calcite, which is the most

stable crystal structure of the mineral [177]. The formation of limescale is a

complicated process dependent on temperature (variation), pressure, time

scales, pH level, water hardness and an interaction of the different polymorphs

of calcium carbonate as well as other minerals [177]. As a result, the rate of

formation and the mechanical properties may vary significantly, for instance,

the layer may exhibit different kind of micro-structures.

Albeit the above mentioned difficulties, formation of a homogeneous and

isotropic calcite (material parameters in Appendix A) layer is assumed for

simplicity. Solving for the guided waves in the bi-layered plate yields the

dispersion curves shown in Fig. 7.5. The layer thickness ℎl is varied from

0 mm to 1 mm, which corresponds to the thickness of the brass pipe wall. The

phase velocity dispersion curves are shown in Fig. 7.5a, while the relative

changes with respect to ℎl = 0 mm are depicted in Fig. 7.5b.
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Figure 7.5: Scaling: phase velocity changes with increasing calcite layer thickness ℎl deposited

on the pipe wall (brass pipe with thickness ℎ = 1 mm).
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Figure 7.6: Scaling: radiation rate changes with increasing calcite layer thickness ℎl deposited

on the pipe wall (brass pipe with thickness ℎ = 1 mm).

For high frequencies, the wave labeled “A0” is not sensitive to the calcite

layer thickness, as can be seen in Fig. 7.5. Albeit low sensitivity to undesired

environmental changes is desired, this region should be avoided. This is

because the radiation into the pipe’s interior is lost, as can be concluded from

Fig. 7.6, which shows the radiation rate of the “A0” and “S0” waves. The reason

for the low radiation is that the wave confines to the brass layer, which has no

longer direct contact to the water. The UFM device requires that the radiation

be guaranteed even under calcite deposition.
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Dezincification
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Figure 7.7: Dezincification: change of phase velocity with increasing dezincification thick-

ness Δℎ. A layer of copper is thereby deposited on the pipe wall of thickness 0.57Δℎ. The brass

pipe wall thickness is ℎ = 1 mm.
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Figure 7.8: Dezincification: radiation rate changes with increasing dezincification corrosion

thickness Δℎ of the pipe wall (brass pipe with thickness ℎ = 1 mm).

Another process that forms a layer on the pipe wall is dezincification of a

brass pipe [178]. This corrosion process of the copper-zinc alloy exhibits two

forms [178]: (i) oxidation and dissolution of zinc into the water, or (ii) both

copper and zinc oxidate and dissolve, whereby the copper precipitates again

onto the pipe wall. In both cases, zinc is preferentially dissolved into the water,

leading to a layer of copper on top of the brass material. Note that the copper
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may settle with different structures, e.g., dense or porous. The process may

occur uniformly on the whole pipe’s area (layer dezincification) or locally (plug

dezincification), thereby forming holes [179]. Any type of dezincification may

be accompanied by the deposition of meringue [178], which mainly consists of

environmentally hazardous zinc carbonate with inclusions. Both dezincifica-

tion and meringue formation are not well understood. Many factors affect

the process, for instance, the brass alloy (composition, phase and doping),

chemistry of the water (pH, hardness, chloride) and physical factors (water

flow velocity, contact to other metals, surface structure of the pipe) [178].

Moreover, dezincification leads to interior mechanical stresses [180], which

may change the wave propagation inside the pipe wall [142, P2].

For simplicity, we assume that the plate thickness reduces due to corro-

sion, while at the same time a homogeneous and isotropic layer of copper is

deposited. That is, ideal layer dezincification without meringue buildup is

considered. If the loss in pipe wall thickness is Δℎ, then the deposited copper

layer will be of thickness 0.57Δℎ. This relationship has been determined by

stoichiometry of a CuZn37 brass alloy using the molar volumes of copper and

zinc.

The resulting phase velocities of the bi-layered waveguide are presented in

Fig. 7.7a and the corresponding relative changes with respect to no dezincifi-

cation are shown in Fig. 7.7b. The higher order modes are highly affected by

dezincification. On the other hand, fundamental modes are only moderately

changed considering that dezincification of up to 70 % is considered.

The radiation rate of dezincified brass is given in Fig. 7.8. The effect is not

as detrimental as for calcite layer formation. Note that the “A0” at 1 MHz, for

instance, exhibits increasing radiation. A relatively stable operating point

with respect to changes in radiation rate of the “A0” wave is encountered at

about 2.2 MHz.

7.4 Temperature cross-sensitivity

The effect of temperature on the system is of particular interest. In conven-

tional transit-time UFM, temperature compensation is primordial for accurate

flow metering [1, 2]. It is desirable to design a robust system capable of operat-

ing in a very wide temperature range, e.g., 0 °C to 100 °C. These environmental

conditions are encountered in practice and may change during operation.

Temperature affects all components of the system. We discuss only the effects

on ultrasonic wave propagation. As shown in Fig. 7.2, it is affected in three
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ways by temperature, namely, changes in (i) the fluid wave speed 𝑐f, (ii) the

pipe wall material parameters 𝒄, 𝜌, and (iii) the pipe wall thickness ℎ. The

latter can be studied using the thermal expansion coefficient of the material

together with the analysis from Subsec. 7.3.1. We found that the effect of

thermal expansion is much smaller as compared to (i) and (ii) and will be

neglected. The remaining two effects are discussed in the following.

7.4.1 Temperature dependence of the pipematerial

Change of the material parameters has been discussed in Subsec. 7.3.2. This

can be used to analyze the effect of temperature 𝒯 = 𝒯0 + Δ𝒯 on wave propa-

gation in the pipe wall. We are mostly concerned with the deviation Δ𝑇 form

the reference temperature 𝒯0 = 20 °C. The dominant effect is on the Young’s

modulus, i.e., 𝐸 = 𝐸(𝒯). From (7.9) we have

𝜖𝒯𝑐p

def
=

Δ𝑐p

𝑐p
=
1

2

𝑐p

𝑐e

𝜕𝐸

𝜕𝒯

Δ𝒯

𝐸
, (7.10)

where
𝜕𝐸

𝜕𝒯
is the temperature coefficient of the material. Metals have negative

coefficients [181] and the relevant ones are explicitly provided in Appendix A.

Note that all variables in (7.10) are taken to be at the reference temperature 𝒯0
(except Δ𝒯).

The relative change in phase velocity per unit change in temperature is shown

in Fig. 7.9. The effect seems to be rather low. However, the temperature may

deviate as much as 80 K. For this reason, it is important to consider this effect

in order to obtain an accurate model for UFM devices.
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Figure 7.9: Temperature induced change in phase velocity of Lamb waves (brass pipe).
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The calculation in Fig. 7.9 is a linear approximation using free Lamb waves.

The exact calculation obtained by calculating the QGWs with varying 𝐸(𝒯) is

displayed in Fig. 7.10. Except for the additional QS mode and the low frequency

region of the A0’ wave, the linear approximation agrees very well to the full

model. For instance, setting Δ𝒯 = 100 °C in Fig. 7.9 corresponds to the yellow

curves in Fig. 7.10b.
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Figure 7.10: Temperature affecting 𝐸(𝒯): the phase velocity changes due to changes in the

Young’s modulus 𝐸(𝒯) (1 mm brass).

We may conclude that the phase velocity of waves in the pipe wall changes

linearly with temperature. This is not too surprising given the fact that we

are using a linear temperature coefficient. Note, however, that the Young’s

modulus 𝐸(𝒯) does not factorize in the QGW stiffness operators given in

Subsec. 3.2.2 or 3.2.3 and they are, hence, not exactly proportional to 𝐸(𝒯).

This is due to the fluid degree of freedom, which is independent of 𝐸(𝒯).

7.4.2 Temperature dependence of the fluid wave speed

The wave speed 𝑐f in water is highly dependent on temperature, i.e., 𝑐f = 𝑐f(𝒯).

We use a phenomenological model obtained by Bilaniuk and Wong [182, 183].

They fit a fifth order polynomial to measured data (see Appendix A) valid

from 0 °C to 100 °C. The temperature-dependent speed of sound in water is

depicted in Fig. 7.11. Note that it exhibits a maximum at 𝒯 ≈ 74 °C.

The fluid wave velocity affects the QGW dispersion curves, which are shown for

the full temperature range in Fig. 7.12a and the corresponding relative changes

with respect to 𝒯 = 0 °C in Fig. 7.12b. Only the mostly water-born waves are
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Figure 7.11: Temperature-dependence of the wave speed 𝑐f in water.
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Figure 7.12: Temperature affecting 𝑐f(𝒯): the phase velocity changes due to changes in wave

speed 𝑐f(𝒯) of water (1 mm brass).

affected, i.e., the high frequency QS’ wave as well as the low frequency A0’

wave. The temperature-dependence 𝑐f(𝒯) seen in Fig. 7.11 directly affects the

high frequency region of the QS’ wave. In particular, its phase velocity exhibits

a maximum where 𝑐f(𝒯) shows the maximum.

In practice, both the pipe wall 𝐸(𝒯) and the fluid wave speed 𝑐f(𝒯) are affected

by temperature. Assuming that the temperature distributes uniformly, both

effects superpose to give the dispersion curves in Fig. 7.13a. The relative

changes with respect to 𝒯 = 0 °C are shown in Fig. 7.13b. Note that in practice,

the temperature might not distribute uniformly. In this case, it might be more

appropriate to assume the pipe wall and the fluid to be at different (maybe

homogeneous) temperatures.
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Figure 7.13: Temperature affecting 𝐸(𝒯) and 𝑐f(𝒯): the phase velocity changes due to changes

in the Young’s modulus 𝐸(𝒯) of the pipe wall and the sound speed 𝑐f(𝒯) in water (1 mm brass).

7.4.3 Overall differential effect of temperature

Henceforth the model is simplified by assuming that the QGW’s phase veloc-

ity is independent of the fluid wave speed 𝑐f. According to Fig. 7.12, this

is justified for all waves except the QS mode and the A0’ wave close to its

coincident frequency. Hence, 𝑐p is only affected by changes of the Young’s

modulus 𝐸(𝒯). Note that this situation was also considered when deriving

the cross-sensitivities of the volumetric flow rate in (7.5).

Using (7.5) and (7.10), the differential measurement error due to temperature

is 𝜖𝒯𝑄 = 𝜖
𝐸(𝒯)
𝑄 + 𝜖

𝑐f(𝒯)
𝑄 , where

𝜖
𝐸(𝒯)
𝑄

def
= 𝜖

𝑐p

𝑄 𝜖
𝒯
𝑐p
=

−𝑐3p

2𝑐e(𝑐
2
p − 𝑐

2
f )

𝜕𝐸

𝜕𝒯

Δ𝒯

𝐸
, (7.11)

and

𝜖
𝑐f(𝒯)
𝑄

def
= 𝜖

𝑐f
𝑄 𝜖

𝒯
𝑐f
= +

2𝑐2f − 𝑐
2
p

𝑐2p − 𝑐
2
f

𝑐f(𝒯) − 𝑐f

𝑐f
. (7.12)

It is worth inspecting each of the effects (7.11) and (7.12) separately. They are

shown in Fig. 7.14a and Fig. 7.14b, respectively. While the former is linear in

𝒯, the latter is not – hence the surface plots in the 𝒯-𝑓-plane.
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Figure 7.14: Relative error 𝜖𝑄 =
𝑄m−𝑄

𝑄
due to temperature. Effects acting through 𝐸 and 𝑐f are

segregated. Water measurement in a 1 mm brass pipe.

Observe in Fig. 7.14a that the deviation due to 𝐸(𝒯) is positive, while the error

due to 𝑐f(𝒯) seen in Fig. 7.14b might be negative. As a consequence, the two

effects compensate in regions where this is the case.

Lastly, Fig. 7.15 shows the total relative measurement error, i.e., 𝜖𝒯𝑄 = 𝜖
𝐸(𝒯)
𝑄 +

𝜖
𝑐f(𝒯)
𝑄 . The low frequency and high temperature region of the S0’ wave profits

slightly of the mentioned compensation effect, resulting in lower errors than

in Fig. 7.14b. Note the additional downward-going frequency-dependent zero-

error band in the 𝒯-𝑓-plane of the S0’ wave in Fig. 7.15. This is due to the

“sweet spot” marked in Fig. 7.1b.
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Figure 7.15: Total relative error 𝜖𝑄 =
𝑄m−𝑄

𝑄
of the measured flow rate due to temperature (1 mm

brass pipe with water).
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7 Sensitivity and interference errors

7.5 Flowmeter sensitivity including temperature

Making use of the analysis in Sec. 7.4, the effect of temperature can now

be included in the expression for the flow meter’s sensitivity 𝒮. With the

simplification sin𝜃(𝒯) =
𝑐f(𝒯)

𝑐p(𝒯)
, it is given by3

𝒮(𝒯) =
1

4
𝐾𝑑𝑐f(𝒯)√𝑐

2
p(𝒯) − 𝑐

2
f (𝒯) (7.13a)

=
1

4
𝐾𝑑

𝑐2f (𝒯)

tan𝜃(𝒯)
, (7.13b)

in terms of 𝑐f and 𝑐p or 𝑐f and 𝜃, respectively. Therein, 𝑐f(𝒯) is given by the

polynomial fit discussed in Subsec. 7.4.2 and 𝑐p(𝒯) is determined by (7.10) as

𝑐p(𝒯) = 𝑐p +
1

2

𝑐2p

𝑐e

𝜕𝐸

𝜕𝒯

Δ𝒯

𝐸
. (7.14)

Note that (7.13) can be used for simple temperature compensation: after

measuring 𝒯, the corresponding sensitivity 𝒮(𝒯) can be used to determine

the flow rate 𝑄.

Let’s discuss the impact of temperature on different UFM systems. Eq. (7.13b)

is valid for piston transducer devices in V-path arrangement except that the

radiation angle 𝜃 remains constant thereby4. As a consequence, the sensitivity

changes as 𝑐2f (𝒯) and is accordingly highly temperature-dependent [2].

In contrast to this, the radiation angle 𝜃(𝒯) of Lamb wave-based devices

adjusts with temperature such that the sensitivity changes according to the

factor 𝑐f(𝒯)√𝑐
2
p(𝒯) − 𝑐

2
f (𝒯) in (7.13a). Note that the phase velocity decreases

with temperature5. As a consequence, on the range 0 °C to 74 °C – where

𝑐f increases monotonically – the square root is guaranteed to decrease and

(partly) compensates the growth of the 𝑐f(𝒯)-factor. We conclude that the

variation of 𝒮(𝒯)with temperature is less than that of 𝑐f(𝒯)𝑐f(𝒯0). As a result,

Lamb wave-based flow meters are much less affected by temperature than

conventional piston transducer UFM devices (𝒮 ∼ 𝑐2f (𝒯)).

3 Note: the first expression makes use of cos arcsin
𝑐f

𝑐p
= √1 −

𝑐2f

𝑐2p
.

4 The radiation angle is fully determined by the transducer’s orientation.

5 Remember that metals exhibit negative temperature coefficients
𝜕𝐸

𝜕𝒯
, see Sec. 7.4.1.
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7.5 Flow meter sensitivity including temperature

To give an impression, the temperature-dependent sensitivity 𝒮(𝒯) of (i) a

steel pipe A0 wave, (ii) a brass pipe A0 wave, and (iii) a traditional piston

transducers UFM device are compared in Fig. 7.16a. Moreover, the relative

change of their sensitivity with respect to 20 °C, i.e.,
𝒮(𝒯)

𝒮(20 °C)
− 1, is shown in

Fig. 7.16b. While the relative change in sensitivity of piston transducer devices

is as large as 10 %, a flow meter exploiting the A0 wave in a steel pipe exhibits

deviations below 2.5 %.
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Figure 7.16: Temperature-dependence of the flow meter sensitivity 𝒮(𝒯).

Furthermore, as seen in Fig. 7.16a, the A0 wave in steel profits from its higher

phase velocity (lower radiation angle), which leads to a larger overall sensitivity

and is less affected by temperature in relative terms. However, this yields

correspondingly lower differential time of flights Δ𝜏p = 𝑄/𝒮. That is, the

effect of convection on the transmitted signals will be maximized when 𝒮 is

minimized. It must be ensured that the system is capable of acquiring Δ𝜏p

with sufficient accuracy.

Note that the slope at 20 °C seen in Fig. 7.16 is negatively proportional to the

local sensitivity defined in (7.4). The relation to the corresponding “sweet

spot” 𝑐p = √2𝑐f found in Fig. 7.1b should be established. While the brass

meter has 𝑐p < √2𝑐f, for the steel meter 𝑐p > √2𝑐f. This results in the

different sign of the slope seen in Fig. 7.16b. Remember that the sweet spot

describes a local zero-sensitivity to changes in 𝑐f while 𝑐p is assumed constant.

Correspondingly, for such an operating point, 𝒮(𝒯) exhibits a stationary point

at 20 °C when
𝜕𝐸

𝜕𝒯
is set to zero. However, at this point the effect of 𝑐p(𝒯) is

dominant when
𝜕𝐸

𝜕𝒯
≠ 0 and its consideration substantially changes 𝒮(𝒯).

As a consequence, a global temperature-dependent analysis including both

the effect on 𝑐f and 𝑐p is indispensable to find a good operating point and

appropriately model 𝒮(𝒯) for temperature compensation.
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7 Sensitivity and interference errors

The variation of sensitivity 𝒮(𝒯) over the entire temperature range is analyzed

systematically in a quantitative way by inspecting the root mean square error

due to temperature. For this, we define the (squared) deviation as

(Δ𝒮)2
def
=

1

100 °C
∫

100 °C

0 °C

[𝒮(𝒯) − 𝒮(20 °C)]
2

d𝒯 , (7.15)

and the corresponding relative error by

𝐹rel =
Δ𝒮

𝒮(20 °C)
, (7.16)

which corresponds to the root mean square of the curves in Fig. 7.16b. Note

that 𝒮 and consequently 𝐹rel does not only depend on 𝑐p, but also on 𝑐e

according to (7.14), i.e., on the dispersive behavior of waves inside the pipe

wall.

The resulting dispersion curves of the relative error is depicted exemplarily for

a brass and a steel plate in Fig. 7.17. It is remarkable that the global error due to

temperature tends to stay below about 3 % for the steel setup, which compares

to 7.8 % for a piston transducer setup. We note that the curves depend quite

strongly on the temperature coefficient
𝜕𝐸

𝜕𝒯
. However, even for

𝜕𝐸

𝜕𝒯
= 0 GPa/K,

they stay strictly below 4 %, except for the A0 wave at coincidence.
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Figure 7.17: Relative root mean square error due to temperature.

Concluding, it may be stated that it is worth inspecting the temperature-

dependence of the pipe’s mechanical parameters in order to find a temperature-

insensitive operating point. In any case, Lamb wave-based UFM is always less

dependent on temperature than conventional flow meters. If required, the

model developed in this section can be used for active temperature compen-

sation.
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8 Flowmeter: model validation
and measurements

The models developed in the previous chapters will be validated against

experimental data in the following. For this purpose, a prototype of the

Lamb wave-based UFM device [19, 20] has been built by the project partner1.

Photographs are shown in Fig. 8.1. The steel pipe (Appendix A) has a wall

thickness ℎ = 1.5 mm. The rectangular cross section is of inner dimensions

𝑏 = 1.5 cm and 𝑑 = 1 cm.

transducers

pipetemp. sensor

Figure 8.1: Flow meter prototype built by Diehl Metering GmbH.

First, the model is validated in Sec. 8.1 against measurements with the proto-

type. Then, the inverted model is used to determine the flow rate in Sec. 8.2

and the temperature in Sec. 8.3. Lastly, a general inversion scheme with

automatic error compensation is proposed in Sec. 8.4.

8.1 Validation: experimental data of a prototype

Two kind of measurements are used to validate the model: (i) LDV measure-

ments of the pipe wall vibrations and (ii) pitch-catch measurements with

controlled temperature and flow rate. These are discussed separately in the

following.

8.1.1 LDVmeasurements

First, the LDV measurements (see Sec. 5.2) are presented in Fig. 8.2. A comb

array transducer (see Subsec. 5.1.2) matched to the A0’ wave is driven with a

1 MHz Gaussian sinusoidal burst shown in Fig. 8.2b (scaled amplitude). The

peak amplitude is approx. 100 V. The signal recorded at about 9 cm from

1 Diehl Metering GmbH, Ansbach, Germany
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8 Flow meter: model validation and measurements

the transducer’s center exhibits two pulses that clearly separate in time: the

direct path wave and the V-path wave. Scanning a line along the pipe axis

gives the 𝑥-𝑡 data from Fig. 8.2c. A ℱ𝑥-ℱ𝑡-Fourier transform of the latter yields

the 𝑓-ℜ𝑘𝑥-spectrum depicted in Fig. 8.2d.
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Figure 8.2: LDV measurement of a sinusoidal burst propagating along the pipe wall.

The quasi-guided wave model from Sec. 3.2 yields the wavenumbers superim-

posed in Fig. 8.2d. The match to the experimentally obtained wavenumbers

is very good. This confirms that the quasi-guided plate wave model developed

in this monograph is valid to describe waves in the pipe wall of the flow meter

prototype.

The measurement data form Fig. 8.2d demonstrates that an almost pure A0’

wave (see Subsec. 3.2.6) is excited by the transducer. Moreover, no reflections

from the pipe end can be observed in the considered time interval. These are

excellent circumstances to operate the setup as a flow meter.
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8.1 Validation: experimental data of a prototype

8.1.2 Ultrasonic pitch-catchmeasurements

Second, ultrasonic pitch-catch measurements under controlled temperature

and flow rate conditions were performed2 at the project partner’s test facility.

The water temperature and flow rate are adjusted by the facility’s main con-

troller to the desired nominal values 𝒯nom and 𝑄nom, respectively. Moreover,

it provides the current actual flow rate 𝑄ref, which serves as reference for the

measurement value 𝑄m determined by the device under test. The reference

temperature 𝒯ref, on the other hand, is obtained by the flow meter itself using

a negative temperature coefficient thermistor introduced into the flow meter

pipe.

Two A0’ wave comb array transducers (see Subsec. 5.1.2) are mounted on the

flow meter prototype with an axial separation of𝐷 = 9 cm. They are alternately

excited with a 1 MHz sinusoidal burst using a specialized microcontroller,

while the other one serves as a receiver. The microcontroller is also in charge

of analogue to digital conversion of the received signals. In this way, the

ultrasonic upstream signal 𝑠u(𝑡) and downstream signal 𝑠d(𝑡) are obtained.

Multiple measurements are recorded during one test cycle, i.e., at fixed 𝑄nom

and 𝒯nom.

The test facility was used to record a set of upstream and downstream signals

for a number of operating points. The target values for the volumetric flow

rate 𝑄nom in L/h were 6.4, 63, 630, 4000, 5000, and 6000; while the tempera-

ture 𝒯nom was set from 10 °C to 90 °C in steps of 10 °C. Each signal is sampled

at 8 MHz with 321 points in total.

Recorded signals

In order to gain understanding, the recorded signals are presented qualitatively

prior to reducing them to a scalar time of flight. As a first example, the

upstream and downstream signals for 𝑄ref = 6021 L/h and 𝒯ref = 19.9 °C are

plotted in Fig. 8.3a. Note that both direct wave signals coincide, as expected.

The V-path wave, on the other hand, exhibits a clear phase difference between

the upstream and downstream recordings.

2 The raw data was obtained by the project partner Diehl Metering GmbH, Ansbach, Germany.

The signal analysis and evaluation is performed by the author.
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Figure 8.3: Recorded ultrasonic upstream and downstream signals at 𝑄ref = 6021 L/h and

𝒯ref = 19.9 °C.

The difference in “instantaneous phase”3 𝜑u
i (𝑡) − 𝜑

d
i (𝑡) of the signals is

depicted in Fig. 8.3b. It is estimated by

𝜑u
i (𝑡) − 𝜑

d
i (𝑡) = arg{𝑠d

a 𝑠
u
a
∗
} , (8.1)

where 𝑠a = 𝑠(𝑡) − iℋ𝑠(𝑡) is the analytic signal4 corresponding to 𝑠, and ℋ

denotes the Hilbert transform defined asℋ𝑠(𝑡)
def
= p.v.

1

𝜋
∫
∞

−∞

𝑠(𝜏)

𝑡−𝜏
d𝜏 [184].

Second, two downstream signals at different temperature but same flow rate

are presented in Fig. 8.4a. Their respective instantaneous phase difference

Δ𝜑i = 𝜑
d
i (40 °C) − 𝜑d

i (20 °C) is shown in Fig. 8.4b. Temperature affects both

the direct as well as the V-path pulses. Thereby, phase delays due to flow rate

and temperature combine in the V-path signal.

Time-of-flight evaluation of phase fronts

The phase difference of the signals with respect to a chosen reference signal is

obtained from their respective fast Fourier transform (FFT) at fixed frequency

(at the magnitude’s maximum 1.018 MHz). Evaluating the V-path downstream

signals 𝑠d with respect to a sample at𝒯nom = 70 °C and 𝑄nom = 630 L/h yields

the measured time-of-flight values 𝜏m
p plotted in Fig. 8.5a. The reference

sample is arbitrary and was chosen close to the stable temperature (where the

3 Note that in a Fourier-frequency sense, “instantaneous phases” do not exist, since this is an

infinite-time process. In fact, a time-frequency uncertainty holds instead [184].

4 The negative sign is due to the sign convention in the definition of the temporal Fourier

transform given in Subsec. 2.2.1.
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Figure 8.4: Recorded ultrasonic downstream signals at two different temperatures with 𝑄ref =

6.4 L/h.

wave speed of water does not change) and with a medium level of flow rate.

Incorporating the effect of temperature into (6.12) results in

𝜏p(𝑣0, 𝒯) =
𝐷 − 2𝑏 tan𝜃(𝒯)

𝑐p(𝒯)
+

2𝑏

𝑐f(𝒯) cos𝜃(𝒯)
(1 −

𝑣0

𝑐p(𝒯)
) + 𝜏0 , (8.2)

where 𝜏0 is an unknown constant offset. The model (8.2) is also shown in

Fig. 8.5a and the measured values 𝜏m
p – which are periodic in 𝑇 ≈ 1 µs – have

been unwrapped around it.
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Figure 8.5: Model vs. measurement of the absolute and differential time of flight of the V-path

A0’ wave.

The surface’s curvature in Fig. 8.5a is determined by both 𝑐f(𝒯) and 𝑐p(𝒯). The

only parameter with high degree of uncertainty is
𝜕𝐸

𝜕𝒯
from (7.14). Minimizing

the target function 𝜏p(
𝜕𝐸

𝜕𝒯
) − 𝜏m

p yields
𝜕𝐸

𝜕𝒯
= −0.0993 GPa/K. After fitting this

single scalar parameter, we obtain the excellent agreement between measured
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8 Flow meter: model validation and measurements

data and model that can be observed in Fig. 8.5a, exhibiting a root-mean-

square error of 5.8 ns. Henceforth, the above given value of
𝜕𝐸

𝜕𝒯
will be used

for the evaluations.

The measured upstream-downstream differential time of flightΔ𝜏m
p is obtained

in a similar manner using the FFT. Thereby, for every upstream signal, the

corresponding downstream signal 𝑠d serves as reference. The measured val-

ues depicted in Fig. 8.5b align well with the model surface as predicted by

Δ𝜏p = 𝒮
−1(𝒯)𝑄 with 𝒮(𝒯) from (7.13). The root-mean-square error between

model and measurements is only 1.8 ns. In contrast to Fig. 8.5a, and as expected

from Sec. 7.5, it is barely dependent upon temperature 𝒯. This is a big strength

of Lamb wave-based flow meters. For comparison, the expected differential

time of flight for a piston transducer UFM is also shown. Thereby, the constant

radiation angle 𝜃 = 35.3° corresponds to the A0’ wave’s angle at 20 °C. The

piston model exhibits a root-mean-square error to the measured data of 7 ns.

Most notably, the temperature-dependence expected by this model does not

align with the evidenced measurements, as can be observed in Fig. 8.5b. This

demonstrates that conventional modeling of ultrasonic flow meters is not

appropriate for Lamb wave-based systems.
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Figure 8.6: Expected vs. measured differential time of flight Δ𝜏p.

The projection of Fig. 8.5b onto the Δ𝜏p-𝒯 plane is depicted in Fig. 8.6a, while

the projection onto the Δ𝜏p-𝑄-plane is shown in Fig. 8.6b. Both representa-

tions yield valuable insight into the temperature dependence of the model and

the variation of the acquired differential time of flight Δ𝜏m
p . The lowest and

highest expected slope are drawn into Fig. 8.6b. The variation of the measured

values is larger then expected due to temperature and does not correlate with

it. The distance correlation coefficient5 between 𝒮m = 𝑄ref/Δ𝜏
m
p and 𝒯ref is

0.03 and the Pearson correlation coefficient between 𝒮m and 𝒮(𝒯ref) is 0.003.
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8.1 Validation: experimental data of a prototype

This demonstrates that the variation in Δ𝜏m
p is mainly caused by other process

uncertainties.
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Figure 8.7: Errors in the evaluated upstream-downstream differential time of flight Δ𝜏m
p :

mean 2𝜎-error bars model

Lastly, we examine the reliability of the dataset comprising the 7665 mea-

surements and consisting of upstream and downstream signals as well as the

accompanying signal processing. Some statistics of the evaluated upstream-

downstream differential time of flight Δ𝜏m
p is presented in Fig. 8.7 along with

the expectation from the model. No sort of correction has been made therein.

As the hydrodynamic correction is missing, i.e., 𝐾 = 1, the low flow rates

are underestimated by the model. While the standard deviation increases in

absolute terms with𝑄nom, it strongly decreases in relative terms. Note that the

expected Δ𝜏p for 𝑄nom = 6.4 L/h is merely 0.23 ns, which equals the 2𝜎-width

of the distribution. Conspicuous is the rather arbitrary temperature depen-

dence of the data. This confirms, again, that the errors should be ascribed to

other effects.

This concludes the validation of the Lamb wave-based UFM model developed

in this monograph. A physics-based description of the flow rate-dependent

time of flight of ultrasonic signals has been attained. Thereby, the effect of

temperature from 0 °C to 100 °C has been included in a precise manner. With

regard to the upstream-downstream differential time of flight, the prototype

was shown to be less affected by temperature than piston transducer flow

5 Neither the Pearson nor the Spearman correlation coefficient are appropriate, as the expected

relation between the slope 𝒮 and temperature 𝒯 is nonlinear and nonmonotonic.
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8 Flow meter: model validation and measurements

meters. The flow rate will be retrieved from the acquired time of flights in the

next section.

8.2 Flow rate determination from the V-path

After acquiring the V-path differential time of flight Δ𝜏m
p , the volumetric flow

rate can be obtained according to (7.1) by

𝑄m = 𝒮(𝒯)Δ𝜏
m
p . (8.3)

Therein, the temperature 𝒯ref acquired by the temperature sensor is utilized.

Without hydrodynamic corrections (𝐾 = 1, see Subsec. 1.2.4), the resulting

measurement deviations with respect to the reference flow rate 𝑄ref are pre-

sented in Fig. 8.8. A series of histograms is plotted using only the data subset

where 𝑄nom is below the indicated values, revealing the flow rate-dependent

distribution of deviations. Note that 𝑄ref is not known for each single mea-

surement, but only as a mean value of every tested operating point (𝑄nom,

𝑇nom). Hence, the deviations are not necessarily errors.
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Figure 8.8: Distribution of deviations of the 7665 measurements without hydrodynamic cor-

rections (𝐾 = 1). Occurrences are accumulated from low to high values of the nominal flow

rate 𝑄nom.

The absolute deviations 𝑄m − 𝑄ref are seen to increase with the flow rate in

Fig. 8.8a. The converse is true for the relative measurement deviations in

Fig. 8.8b. This is because for low flow rates, the associated differential time of

flight is close to the uncertainty in obtaining the quantity (see Fig. 8.7), which

leads to high variations. Nonetheless, the corresponding deviations are small

in absolute terms. This is a well-known behavior of transit-time UFMs.
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Figure 8.9: Comparison of measurement deviations without hydrodynamic corrections (𝐾 = 1)

using different inversion methods.

Note that the low flow rates are biased towards positive deviations, i.e., they

are overestimated. This is attributed to the fact that the calibration factor 𝐾

has been set to unity, which is a good approximation for turbulent flow only.

For flow rates in the laminar and transitional regimes 𝐾(𝑣0) < 1, which is

usually determined experimentally.

The above evaluation requires the temperature 𝒯 to be known. As has been

shown in Sec. 7.5, the temperature-dependence of 𝒮 is low for the prototype

under inspection. Moreover, according to Subsec. 8.1.2, the uncertainty in

acquiring Δ𝜏m
p is higher than the effect of temperature. Hence, it is possible

to fix 𝒮 at 𝒮0 = 𝒮(20 °C) and abstain from temperature-compensation. Pro-

ceeding in this way avoids the temperature sensor altogether. This results in

a very simple measurement at cost of introducing some errors. The overall

measurement deviations using either 𝒯ref or 𝒯0 = 20 °C in the computation of

𝑄m are compared in Fig. 8.9a. This confirms that, in contrast to conventional

UFM, temperature compensation is of minor importance with the utilized

Lamb wave-based flow meter prototype.

Instead of using the physical model developed in this work, the flow meter

could rely on a phenomenological model for flow rate determination. For

instance, a function linear in Δ𝜏p and cubic in 𝒯 has been fitted to the

Δ𝜏m
p -𝒯ref-𝑄ref data set (i.e., the inverted model is fitted) using a least squares

method. Using this fit to determine 𝑄m yields the measurement deviation

distribution shown in Fig. 8.9b in comparison to the previous results. Note

that the fit tries to minimize the sum of squares by moving down the very

high errors at cost of displacing the peak error density, i.e., the maximum in

Fig. 8.9b, away from zero. This could be undesired. While the fit is specialized
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8 Flow meter: model validation and measurements

to the prototype with given geometry and materials, the physical model is

universally applicable and can be used for device optimization.

The effect of hydrodynamics shall be illustrated by inspecting the experimen-

tally obtained correction factor𝐾 = 𝑄ref/𝑄m. Therein, the • refers to the mean

over all acquired data at certain 𝑄nom. The results are plotted together with

an exponential fit in Fig. 8.10a. The fit is of the form 𝐾(Δ𝜏m) ≈ 𝐴 − 𝐵 e−𝐶Δ𝜏m

and results in 𝐴 = 0.987, 𝐵 = 0.211 and 𝐶 = 0.344/ns. The correction factor

exhibits the expected behavior: it increases with the flow rate and saturates in

the turbulent flow regime. 𝐾(Δ𝜏m) can be used in 𝒮(𝒯), see (7.13), to calculate

the flow rate 𝑄m. The resulting mean relative errors with respect to 𝑄ref are

shown in Fig. 8.10b. Depending on 𝑇nom, the errors are still substantial. In

practice, the correction factor 𝐾 should be made temperature-dependent

because the dynamic viscosity of water depends on it, which results in a shift

of the transitional and turbulent flow regimes. As a consequence, 𝒮 will also

depend on temperature through 𝐾(Δ𝜏, 𝒯).
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Figure 8.10: Correction factor and mean errors.

This section showed that the theoretical time-of-flight model is quite appro-

priate to determine the flow rate 𝑄m. Two main reasons are identified for the

relatively high measurement errors with the prototype. One is the low wave

convection effect (𝒮 too high) compared to the accuracy with which the dif-

ferential time of flight is acquired. This can be resolved by choosing another

operating point with lower 𝒮, see Chap. 7. The other source of errors are

hydrodynamic effects, which affect the results because it has been neglected

in the inverted model. Accurate flow measurements will only be possible if a

calibration is performed to compensate this effect. This is the conventional
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8.3 Temperature determination from direct path

procedure in UFM, but the implementation of a detailed compensation is

outside the scope of this monograph.

8.3 Temperature determination fromdirect path

The ultrasonic system is additionally able to determine the temperature from

the direct path wave. This signal component is particularly suited because it

is expected to be independent of the fluid flow. The A0’ wave’s change in time

of flight with respect to 𝜏d
p(𝒯0), i.e., the time of flight at 𝒯0 = 20 °C, is

Δ𝜏d
p(𝒯)

def
= 𝜏d

p(𝒯) − 𝜏
d
p(𝒯0) =

𝐷

𝑐p(𝒯)
−
𝐷

𝑐p
, (8.4)

where 𝑐p = 𝑐p(𝒯0). With 𝑐p(𝒯) given in (7.14), we obtain

Δ𝜏d
p(𝒯) =

𝐷

𝑐p +
1

2

𝑐2p

𝑐e

𝜕𝐸

𝜕𝒯

Δ𝒯

𝐸

−
𝐷

𝑐p
≈ −

𝐷

2𝑐e

𝜕𝐸

𝜕𝒯

Δ𝒯

𝐸
. (8.5)

With manufacturer provided material data (Appendix A:
𝜕𝐸

𝜕𝒯
= −0.075 GPa/K),

the expected slope
Δ𝜏d

p

Δ𝒯
is 5.18 ns/K, which compares to 5.43 ns/K using material

data from Ref. [185] (Appendix A:
𝜕𝐸

𝜕𝒯
= −0.0787 GPa/K) obtained by measure-

ment of Lamb waves on a plate of the same material. This demonstrates that

the effect is sufficiently large to be exploited using current transit-time UFM

hardware.

The model is compared to the measured time delay Δ𝜏d
pm =

Δ𝜑d

𝜔
of the

direct path wave in Fig. 8.11a. Thereby, the direct-path phase difference

Δ𝜑d is obtained from the phase of the Fourier transform of the signals at

𝑓 = 1.018 MHz with respect to 20 °C. In general, good agreement is found.

The data aligns quite well on a line with slope ≈ 5.36 ns/K (𝑅2: 0.9992,

root mean square error: 3.79 ns). According to (8.5), this corresponds to
𝜕𝐸

𝜕𝒯
= −0.0777 GPa/K.

Unexpectedly, the direct path wave is seen to be slightly dependent on the flow

rate. This is presumably due to flow rate-dependent systematic deviations

between the acquired temperature 𝒯m and its reference 𝒯ref. For instance, in

general, the temperature of the pipe wall (𝒯m) will be different to the one of

the water (𝒯ref). As our test system applies high flow rates only for a short time,
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Figure 8.11: Temperature evaluation from the direct path wave.

𝒯m might not settle into its steady state, which indirectly leads to a flow-rate

dependence.

The temperature can be obtained from (8.5) given the measured delay Δ𝜏d
pm.

It is determined by

𝒯m = 𝒯0 −
2𝑐e𝐸

𝐷
𝜕𝐸

𝜕𝒯

Δ𝜏d
pm . (8.6)

The calculation has been performed for the acquired data. The error between

measured temperature 𝒯m and reference temperature 𝒯ref is shown in the

histogram of Fig. 8.11b. Typical errors are below 2 K. This could be improved

upon by revoking the assumption that 𝒯m = 𝒯ref and, instead, considering

that the plate will be in thermal equilibrium between the water temperature

𝒯ref and the ambient temperature.

The obtained temperature estimate can be used for temperature-compensated

flow measurements, thereby eliminating the need for a dedicated temperature

sensor. As the meter’s cross-sensitivity of flow rate to temperature is low

(see Sec. 7.5), the achieved accuracy in determining 𝒯 might be sufficient

for the desired compensation effect. In view of the fact that conventional

systems need very accurate dedicated temperature sensors – which are rather

expensive and require perforation of the pipe – this represents a remarkable

improvement for UFM systems.
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8.4 A general inversion method: compensation of arbitrary effects

8.4 A general inversionmethod: compensation of
arbitrary effects

An alternative approach to determine the flow rate 𝑄 is sketched in the follow-

ing. So far, it has been assumed that the sensitivity 𝒮 is known and can be used

for direct determination of 𝑄. This might, however, not be the case because

of uncertainties in the system parameters and environmental influences.

In a very general setting, what is known is the dependence of the time of flight

𝜏 – given in (8.2) – on the unknown parameters of interest, which hereinafter

are collected into the vector 𝑝. One of them should be the flow rate 𝑄, as

this is what is to be measured. Other parameters of particular interest are

the temperature 𝒯 and the phase velocity 𝑐p(𝒯), as has been demonstrated in

Chap. 7. If we are able to estimate these two, it will be possible to compensate

most environmental influences and uncertainties on the flow meter.

Multiple signal components reach the receiver as contributions due to different

waves and wave paths. These have been modeled systematically in the previous

chapters. Each of them leads to a time-of-flight expression 𝜏𝑛(𝑝), i.e., a system

of equations is obtained that is collected in the vector 𝜏(𝑝). The task finally

consists in inverting the system, yielding the desired parameters 𝑝 (one of

them being the flow rate 𝑄). Note that this results in automatic compensation

of all undesired effects due to parameters included in 𝑝.

The inversion does not need to be done explicitly in advance – it might not

even be possible to do so. Instead, once the corresponding measurement

values 𝜏m have been acquired, the cost function

𝐹(𝑝) = (𝜏(𝑝) − 𝜏m)2 (8.7)

can be minimized on-line to obtain the best approximation 𝑝
m

.

At least as many independent time-of-flight quantities need to be used as

number of parameters in 𝑝. If more are used, (8.7) can be solved in a least

square sense and this might be of convenience. It is crucial to choose the

quantities such that an invertible and well conditioned system of equations

is obtained, i.e., the 𝜏𝑛 should be independent. For each leaky Lamb wave,

possible time-of-flight quantities are the phase and energy transit times (×2),

each of them as direct or V-path signal (×2). The latter can additionally

be obtained as upstream or downstream signals (×2). The same applies for

trapped waves (e.g., QS mode) except that no V-path signal exists.
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8 Flow meter: model validation and measurements

Considering only the fundamental leaky waves A0’/S0’ and the QS mode,

this gives a total of 14 possible time-of-flight quantities shown schematically

in Fig. 8.12. These cannot all be used in practice because (i) not all of them

are excited, (ii) the contributions need to be separable and (iii) some have

inappropriate physical properties for the setup (e.g., wavelength/radiation

rate).

A0’

S0’

QS

V-path

direct

upstream signal

downstream signal

𝜏p

𝜏e

Figure 8.12: Theoretically available time-of-flight quantities (14 in total).

It is pertinent to restrict to phase delays, since these can be measured more

accurately then envelope/energy delays. Moreover, it is reasonable to use

only upstream-downstream time differences for V-path signals. For direct

path waves, the upstream and downstream signals are the same and we need

to consider the absolute time of flight for one of them instead. The overall

resulting reduction is depicted in Fig. 8.13.
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direct

upstream-downstream sig.

downstream signal

Δ𝜏p

𝜏p

Figure 8.13: Available differential time of flights for phase fronts only (5 in total).

As a proof of concept, the time-of-flight models 𝜏 = [Δ𝜏A0,V
p , Σ𝜏

A0,V
p , 𝜏

S0,d
p −

𝜏
S0,d
p (20 °C)]⊤ have been used, where •V and •d denote the V-path and direct

path, respectively. Moreover, Σ𝜏p denotes the sum of upstream and down-

stream transit times. The method was tested against synthesized measure-

ment data with ±0.5 % random errors in 𝜏m. Moreover, the parameters were

𝑝 = [𝑣0, 𝒯]
⊤, i.e., the flow velocity and temperature. A “trust-region-reflective”

optimization algorithm is capable of determining 𝑝with 0.5 % accuracy. Note,

however, that it is necessary to minimize the cost functional on both sides

of the maximum of 𝑐f(𝒯) separately, as otherwise a local minimum is found.

This illustrates the problematic behavior of 𝑐f(𝒯), which is not invertible.

For now, direct inversion as presented in Sec. 8.2 is preferred due to its sim-

plicity. As low-cost computational power becomes readily available on digital
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signal processors, the method sketched above might gain interest in the near

future. Its strength lies in its generality, as it is capable of determining the best

estimates for all parameters of interest. This avoids additional sensors, e.g.,

for temperature, and leads to automatic compensation of cross-sensitivities.

Accurate modeling of all wave modes and paths – as presented in this mono-

graph – is the foundation that enables this alternative approach.
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Ultrasonic flow meters fully play off their strengths in a non-invasive configu-

ration, i.e., when the pipe’s interior is not perforated and the transducers are

mounted on the outside. This comes, however, at the price of more intricate

physical models required to appropriately describe the wave propagation. This

is the case because the non-invasive system is dependent upon the dynamics

of the pipe wall, which is an elastodynamic system exhibiting pronounced

resonances, denoted here as quasi-guided waves.

Models based on quasi-guided waves, e.g., leaky Lamb waves, account for the

exact pipe wall mechanics. Such models were formulated in this monograph

for all arising wave paths through the flow metering device in a consistent

manner. This includes structure-borne ultrasound (direct path) as well as

waves going through the fluid medium (V-path). Thereby, we included and

assessed the effect of

� convection in the flowing medium,

� temperature (acting on the fluid and the pipe),

� pipe material parameters and thickness (uncertainty and aging), and

� deposition of a layer in the pipe (e.g., scaling or dezincification).

In this way, an extensive picture of the flow meter’s response to its environment

– whether the effect is desired or not – was obtained. The assessment allows

to choose an operating point with good sensitivity and low cross-sensitivities.

The effect of temperature is of major interest, as it needs to be actively com-

pensated in conventional ultrasonic meters. We found that Lamb wave-based

devices intrinsically exhibit a passive compensation mechanism, leading to

a significantly reduced cross-sensitivity to temperature. This is the result of

a complex interplay between the quasi-guided waves in the pipe wall and

the fluid medium. Albeit the reduced cross-sensitivity is already obtained by

considering the temperature-dependence of water alone, it has been shown

that the temperature-dependence of the pipe’s material is also relevant.

Strictly speaking, the time of flight in Lamb wave-based flow meters is different

to that in piston type transducer systems. The latter sense a time of flight

that changes with the fluid flow, whereby the length of the propagation path

remains effectively unchanged. In contrast to this, the Lamb wave-based
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meters exhibit flow-independent transit times through the fluid but the ultra-

sonic beam will be axially displaced when reaching the pipe wall and coupling

back as a quasi-guided wave. The Lamb wave receiver still perceives a change

in transit time because the convected wave has coupled back closer or further

away from the transducer. This means that Lamb wave-based flow meters

sense the beam displacement by means of conventional ultrasonic ranging of

the point of incidence on the pipe wall. In contrast to conventional setups, in

the extreme laminar and turbulent flow regimes the transit time is perfectly

linear in the flow velocity.

The developed concepts and models were verified experimentally. The wave-

numbers obtained from the plane quasi-guided wave problem were validated

with laser Doppler vibrometer measurements on fluid loaded plates. Such

measurements also confirm that the pipe wall of the prototype flow meter

can, in very good approximation, be regarded as a plane waveguide. Schlieren

photographs were taken to reveal the radiation field of leaky waves and non-

specular reflection phenomena, both effects arising in flow meter systems.

Time-of-flight measurements on a prototype device agree well with the flow-

and temperature-dependent transit time model. It can, hence, readily be

used to determine the flow rate from the acquired transit times. However, the

conventional hydrodynamic calibration is still required.

Quasi-guided waves for flowmetermodeling

Central to the developed model and many of the performed studies is the

knowledge of the quasi-guided wave field, in particular, the frequency-depen-

dent wavenumbers and the radiation rate. These are waves propagating along

a mechanical structure that is in contact with an infinite fluid medium (that is,

larger than the wave packet itself). In general, they can be classified into three

categories: (i) perfectly guided waves, which are also called trapped waves;

(ii) leaky waves that radiate into the fluid; and (iii) incoming waves, which

appear due to lack of a radiation condition. The former two are of interest in

flow metering, with emphasis on leaky waves, as they can fully insonify the

interior of the pipe.

We have argued that leaky waves are a very useful concept for flow meter-

ing because they form a rapidly converging discrete basis (albeit for the pipe

wall only). Nonetheless, they are physically very intricate and insufficiently

well understood. This is because they represent eigensolutions of a non-

conservative system, i.e., energy may leak out of the pipe wall into the infinite

fluid medium. As a consequence, many of the conventional mathematical

concepts and tools, e.g., modal expansion and perturbation, are not directly
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applicable. The concept of leaky waves could be avoided by using a modal

basis instead, the so-call radiation modes. However, this basis is continuous,

resulting in an integral representation of the wave field. With such a repre-

sentation, assessment of the flow meter behavior would be rather difficult – if

not impossible.

Quasi-guided waves are described by a nonlinear eigenvalue problem in the

axial wavenumber, which is unusual and difficult to solve. We developed a new

solution procedure based on a change of variable which linearizes the problem

in case of a plane waveguide, i.e., for plates. Conventional linear eigenvalue

solvers can then be used to robustly and reliably obtain the solutions. In con-

trast to conventional methods, our technique guarantees to find all solutions

and is applicable to any combination of pipe and fluid parameters.

A simulation toolbox named Elastodynamic Acoustic Toolbox (EDAT) was

implemented. It is capable of solving guided and quasi-guided wave problems

in plane structures based on a spectral collocation scheme and the above

mentioned change of variable. It can handle generally anisotropic, dissipa-

tive, multi-layered and fluid loaded plates. The analysis presented in this

monograph has entirely been carried out with this toolbox.

Outlook

In addition to the flow rate, other parameters can also be valuable to the

end user. A method that simultaneously solves for multiple parameters has

already been introduced in Sec. 8.4. It could be worth developing a device

geometry and excitation where sufficiently many waves are received to apply

this method. In principle, only (i) the flow rate, (ii) the wave speed in water,

and (iii) the phase velocity in the pipe wall need to be accounted for in order

to obtain a system which is robust against most environmental influences

(including temperature, scaling, sedimentation and aging). In this way, a

self-calibrating flow meter is obtained. Such meters do already exist. It is,

however, worth remarking that the framework developed in this work is also

well suited to achieve this goal.

Additionally, broadband excitation could also be used to increase the informa-

tion at the receiver, i.e., exploiting the dispersive propagation of quasi-guided

waves. Dispersion is already accounted for in the models. However, it would

also need to be considered in the signal processing schemes. Several such

methods have been developed in the literature, one promising example being

the dispersive Radon transform [186].
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Only metallic pipes were considered for the flow meter. Devices based on

polymer pipes may exhibit better transmission into the pipe’s interior. The

implemented EDAT toolbox enables the development and optimization of

polymer-based meters, including fiber-reinforced composites, which repre-

sent a challenge due to their strong interaction with the fluid, dissipation and

anisotropy.

The herein developed solver for quasi-guided waves is restricted to plane

waveguides loaded with one fluid, either on one or both sides of the plate

(which can be rather arbitrary). Adapting the change of variable, it might be

possible to extend the method to different fluids on both sides or even loading

the plate by solid half-spaces. On the other hand, extending the method to

more general waveguide geometries might be more difficult, if not impossible.

In such a case, nonlinear eigenvalue solvers as found in the literature [91, 187]

could still be used.

Some of our analysis still rely on perturbation of guided waves instead of the

quasi-guided ones, e.g., the effect of temperature on the pipe. This assumes

that the field of fluid loaded and free elastic waves are similar, which is not

the case for strongly fluid-coupled structures like a polymer pipe containing

water. Instead of perturbation analysis, it would be feasible to solve the full

wave problem iteratively for every parameter value (e.g., temperature) in order

to assess its influence. This, however, hides the analytical relation between

the parameter and the resulting wave propagation characteristics. Therefore,

it would be desirable to resolve these limitations as discussed next.

As to date, no theory exists to perform a formally sound field expansion in

terms of leaky elastic waves. Consequently, perturbation theory is not possible

and the excitation of leaky waves by the transducer cannot be computed. These

handicaps of leaky wave theory are due to lack of an orthogonality relation. We

conjecture that these difficulties can be resolved by developing a quasinormal

mode theory of the elastodynamic quasi-guided waves, as this has successfully

been done in other disciplines [76].
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Fibre reinforced graphite/epoxy (GREP)

Voigt notated stiffness tensor in GPa:

𝐶 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

109 6.50 6.50 0 0 0

6.50 14.3 6.78 0 0 0

6.50 6.78 14.3 0 0 0

0 0 0 3.76 0 0

0 0 0 0 5.27 0

0 0 0 0 0 5.27

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.1)

Density: 𝜌 = 1540 kg/m3.

Source: [58].

Brass CuZn37

𝜆L in GPa 𝜇L in GPa 𝜌 in kg/m3 𝜕𝐸

𝜕𝒯
in GPa/K

87.2 41.0 8440 −0.05

Source: [188].

Aluminum EN AW-5754

𝜆L in GPa 𝜇L in GPa 𝜌 in kg/m3 𝜕𝐸

𝜕𝒯
in GPa/K

51.4 26.5 2680 –

Poly(methyl methacrylate) – PMMA

𝜆L in GPa 𝜇L in GPa 𝜌 in kg/m3 𝜕𝐸

𝜕𝒯
in GPa/K

4.22 2.34 1190 –

Source: Comsol material data.
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Calcite

𝜆L in GPa 𝜇L in GPa 𝜌 in kg/m3 𝜕𝐸

𝜕𝒯
in GPa/K

106.2 35 2710 –

Source: [189].

Copper EN-DLP

𝜆L in GPa 𝜇L in GPa 𝜌 in kg/m3 𝜕𝐸

𝜕𝒯
in GPa/K

104.7 49.3 8940 –

Source: www.wieland.com.

Steel X6CrNiMoTi17-12-2

𝜆L in GPa 𝜇L in GPa 𝜌 in kg/m3 𝜕𝐸

𝜕𝒯
in GPa/K

115.6 79.0 7900 −0.075 [190], −0.0787 [185]

Source: [185, 190].

Water

Speed of sound in m/s (temperature-dependent):

𝑐f(𝒯) =1.402 387 44 · 103 + 5.038 361 71𝒯 − 5.811 729 16 · 10−2 𝒯2+

+ 3.346 381 17 · 10−4 𝒯3 − 1.482 596 72 · 10−6 𝒯4

+ 3.165 850 20 · 10−9 𝒯5 , (A.2)

Speed of sound at room temperature: 𝑐f(20 °C) = 1482 m/s,

Density: 𝜌 = 1000 kg/m3.

Source: [182, 183].

Glycerol

Speed of sound: 𝑐f = 1920 m/s,

Density: 𝜌 = 1260 kg/m3.
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Table of symbols

Mathematical notation

Example Meaning Description

def
= definition

𝑎 scalar italic

𝒂 tensor of order≥ 1 bold

𝑎 vector single underline

𝑎 matrix double underline

𝑎i fixed index upright index

𝑎𝑖 running index:

𝑖 ∈ {𝑥, 𝑦, 𝑧}

italic index, except: 𝑥, 𝑦, 𝑧

𝑎𝑖𝑏𝑖 = ∑𝑖 𝑎𝑖𝑏𝑖 summation convention repeated dummy index

𝒂𝒃 dyadic product e.g., 𝑎𝑖𝑏𝑗𝒆𝑖𝒆𝑗

𝒂 ⋅ 𝒃 contraction dot product

𝒂 ∶ 𝒃 double contraction double dot product

𝒂 ⋮ 𝒃 triple contraction triple dot product

𝑎⊗ 𝑏 Kronecker product

𝒂1342 permutation of a tensor (𝒆𝑎𝒆𝑏𝒆𝑐𝒆𝑑)
1342 = 𝒆𝑎𝒆𝑐𝒆𝑑𝒆𝑏

𝒂⊤ transposition permutation 𝒂21

tr𝒂 = 𝑰 ∶ 𝒂 trace sum of diagonal elements

|𝒂| = 𝑎 magnitude of 𝑎 vectors only

203



Table of symbols

Mathematical notation (continuation)

Example Meaning Description

ℜ𝑎 real part of 𝑎

ℑ𝑎 imaginary part of 𝑎

arg𝑎 argument (phase) of 𝑎

𝑎∗ complex conjugation (ℜ𝑎 + iℑ𝑎)∗ = ℜ𝑎 − iℑ𝑎

𝑎(𝑥) functional dependence of

𝑎 on 𝑥

𝑎|𝑥 evaluate 𝑎 at 𝑥

d𝑥 differential element

d3𝒙 diff. volume element d3𝒙 = d𝑥d𝑦d𝑧
d

d𝑖
total derivative w.r.t. 𝑖

𝜕𝑖𝑎 partial derivative of 𝑎 w.r.t. 𝑖
𝜕𝑎

𝜕𝑖

∇ = 𝜕𝑖𝒆𝑖 Nabla operator 𝒆𝑥𝜕𝑥 + 𝒆𝑦𝜕𝑦 + 𝒆𝑧𝜕𝑧

∇k = 𝜕𝑘𝑖𝒆𝑖 Nabla-𝒌 operator 𝒆𝑥𝜕𝑘𝑥 + 𝒆𝑦𝜕𝑘𝑦 + 𝒆𝑧𝜕𝑘𝑧

𝒢 waveguide operator 𝒆𝑥i𝑘𝑥 + 𝒆𝑦𝜕𝑦 + 𝒆𝑧𝜕𝑧

∫
𝑏

𝑎
𝑢(𝑥)d𝑥 integral of 𝑢 w.r.t. 𝑥 from

𝑎 to 𝑏

ℱ𝑥𝑎 Fourier transform of 𝑎

w.r.t. 𝑥

ℋ𝑎 Hilbert transform of 𝑎

w.r.t. 𝑡

ℝ set of real numbers

ℂ set of complex numbers
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Table of symbols

Mathematical constants

Name Meaning

e ≈ 2.718 28 Euler’s number

𝜋 ≈ 3.141 59 Archimedes’ constant

i = √−1 imaginary unit

Common indices and notation

Index Meaning

𝑎f fluid quantity

𝑎
d

or 𝑎d discretized quantity

𝑎 mean value of 𝑎

𝑎nom nominal value of 𝑎

𝑎ref reference value of 𝑎

𝑎m or 𝑎m measured value of 𝑎

𝑎u, 𝑎d upstream / downstream quantity 𝑎

Signals

Symbol Meaning Units

𝑠 signal e.g., V

𝑆 signal spectrum magnitude e.g., V s

𝐷 pulse duration s

𝐵 bandwidth Hz

𝑔e spatial-envelope 1

𝑔t time-envelope 1
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Table of symbols

Unit vectors and tensors, identities

Symbol Meaning Comment

𝛿𝑖𝑗 Kronecker delta

𝛿 Dirac delta function

𝒆𝑖 unit directional vector 𝑖

𝑰 = 𝛿𝑖𝑗𝒆𝑖𝒆𝑗 2nd order unit tensor
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Table of symbols

Elastodynamic field and waves

Symbol Meaning Units

𝑡 time s

𝒙 spatial position vector m

𝑥, 𝑦, 𝑧 Cartesian components of 𝒙 m

𝒖 particle displacement vector m

𝒗 particle velocity vector m/s

𝒋 linear momentum kg/(s2 m2)

𝑻 stress tensor (2nd order) N/m2 = Pa

𝑺 strain tensor (2nd order) 1

𝒇 volume force density N/m3

𝒕 traction, i.e., force area density N/m2 = Pa

𝑝 acoustic pressure N/m2 = Pa

𝒑 average power flux density vector W/m2

𝒦, ℰ, ℋ kinetic, elastic and total energy density J/m3

𝐻 total stored energy J or J/m

𝜌 mass density kg/m3

𝒔 compliance tensor (4th order) m2/N

𝒄 stiffness tensor (2th order) N/m2 = Pa

𝜆L, 𝜇L Lamé parameters N/m2 = Pa

𝐸, 𝜈 Young’s modulus, Poisson’s ratio N/m2 = Pa, 1

𝜅 adiabatic compressibility m2/N

𝑍f acoustic wave impedance kg/(m2 s)
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Table of symbols

Elastodynamic field and waves (continuation)

Symbol Meaning Units

𝑓, 𝜔 frequency, angular frequency Hz, rad/s

𝑇 = 1/𝑓 period s

𝒌, 𝑘 wave vector, wavenumber rad/m

𝜆 =
2𝜋

𝑘
wavelength m

𝒔 = 𝒌/𝜔 slowness vector s/m

𝜑 phase rad

𝑐l, 𝑐t longitudinal/transverse wave speed m/s

𝜅l, 𝜅t homogeneous longitudinal/transverse

wavenumber

rad/m

𝒄p, 𝑐p (vectorial) phase velocity m/s

𝒄e, 𝑐e (vectorial) energy velocity m/s

𝒄g, 𝑐g (vectorial) group velocity m/s

𝑫 Kelvin-Christoffel tensor (2nd order) e.g., 1/s2
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Table of symbols

Waveguide description

Symbol Meaning Units

ℎ thickness m

𝑘𝑥 axial wavenumber rad/m

𝑘𝑦 transversal wavenumber rad/m

𝑾 wave tensor (2nd order) e.g., 1/s2

𝑩 waveguide boundary operator N/m3

𝑳𝑖 waveguide stiffness operator N/m2

𝛾 QGW eigenvalue 1

𝑞 QGW eigenvector m

𝑄
𝑖

QGW stiffness operators N/m2 = Pa

𝐷
𝑖

QGW boundary operators N/m2 = Pa

𝐺
𝑖

QGW stiffness operators after transform depends

Γ
𝑖

QGW boundary operators after transform depends

𝑃 = 𝑃𝑛 average power flux along the waveguide W/m

𝜃 radiation angle rad

𝛼 radiation rate 1/m

𝑃 waveguide BCs matrix

𝐴, 𝑆 antisymmetric and symmetric char. eq.

Discretization

Symbol Meaning Units

𝐷
𝑦
, 𝐷

𝑦𝑦
differentiation matrices 1/m

𝐼
d

identity matrix on collocation points 1

𝑁 discretization order (number of collocation

points)

1
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Table of symbols

Normal mode theory

Symbol Meaning Units

𝐴𝑛(𝑥) modal envelope along the waveguide 1

𝑎𝑛(𝑥) axial variations along the waveguide 1

𝑓s𝑛, 𝑓v𝑛 surface/volume waveguide source W/m2

𝑤 transducer aperture m

𝑤p transducer periodicity length m

210



Table of symbols

Flowmeter

Symbol Meaning Units

𝑏 inner pipe width (rectangular) m

𝑑 inner pipe depth (rectangular) m

𝑄 volumetric flow rate m3/s

𝑣A area average of flow velocity m/s

𝑣0 ray path average of flow velocity m/s

Re Reynolds number 1

𝜈f dynamic viscosity of the fluid m2/s

𝐾 flow profile calibration constant 1

𝐿0, 𝐿 ray path length through fluid (without/with)

flow

m

𝑙0 axial propagation distance of beam m

Δ𝑙 axial convection distance m

𝐷 axial distance between transducers m

𝒗0, 𝑣0 (vectorial) fluid flow velocity m/s

𝒙p point on wave front m

𝒗p, 𝑣p (vectorial) ray velocity m/s

𝛾 convection angle rad

𝜏f transit time through the fluid s

𝜏p, 𝜏e time of flight (phases, energy) s

Δ𝜏p, Δ𝜏e differential time of flight (phases, energy) s
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Table of symbols

Sensitivity analysis

Symbol Meaning Units

𝒮 sensitivity of the flow meter m3/s2

Δ𝑎 change/perturbation in 𝑎 units of 𝑎

𝑎′ = 𝑎 + Δ𝑎 perturbed 𝑎

𝜖𝑎 =
Δ𝑎

𝑎
relative deviation in 𝑎 1

𝜖𝑏𝑎 relative deviation in 𝑎 due to 𝑏 1

𝑝 arbitrary parameter (any)

𝒯 = 𝒯0 + Δ𝒯 temperature °C or K

𝒯0 = 20 °C reference temperature °C or K
𝜕𝐸

𝜕𝒯
temperature coefficient of Young’s modulus Pa/K

𝐹, 𝐹rel error function / relative error function any, 1

𝜎 standard deviation any
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Glossary

BC boundary condition. 42, 48, 72, 82, 83, 85, 87, 88, 119

EDAT Elastodynamic Acoustic Toolbox. 37, 59, 81, 90, 128, 155

EVP eigenvalue problem. 29, 37, 57–60, 81, 87–90

FE finite element. 71, 72, 84, 85, 103, 108, 109, 119

FFT fast Fourier transform. 142, 143

LDV laser Doppler vibrometer. 91, 95, 96, 98, 99, 139, 140

PML perfectly matched layer. 54, 55, 72

PMMA poly(methyl methacrylate). 78

QGW quasi-guided wave. 39, 51, 53–61, 65, 68, 70–76, 87–90, 96, 98, 100,

103–105, 110, 114–117, 120, 132, 133

QNM quasinormal mode. 53

QS quasi-Scholte. 65, 68, 69, 73

SC spectral collocation. 59, 84, 85, 90

SH shear-horizontal. 39–41, 43, 51

UFM ultrasonic flow metering. 1–4, 7, 8, 19, 35, 105, 107–109, 111, 112, 120, 121,

123, 128–130, 132, 136–139, 143–146, 148, 149
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Daniel A. Kiefer

Elastodynamic quasi-guided waves  
for transit-time ultrasonic flow metering

A non-invasive ultrasonic flow meter is studied for which the pipe remains unperforated 

and without obstructions in its interior. Elastic waves that are excited inside the pipe 

wall interact with the adjacent fluid to form quasi-guided waves. These can be either of 

leaky or trapped kind. The radiation of the leaky waves is exploited to insonify the pipe‘s 

interior. The quasi-guided waves are studied in-depth with particular emphasis on their 

radiation behavior. Highly reliable and efficient computational methods are developed 

for this purpose. The ultrasonic transit time in the flow meter is modeled systematically 

based on the aforementioned waves. Thereby, the effects of fluid flow and temperature 

are included explicitly in an analytical manner. Compared to conventional ultrasonic flow 

meters, we find that devices based on quasi-guided waves exhibit a strongly reduced 

cross-sensitivity to temperature, which is also confirmed experimentally. The developed 

analytical and numerical techniques enable a systematic optimization of such devices 

with regard to their temperature-dependent behavior, geometrical uncertainties, material 

aging, as well as scaling and deposition of other layers.
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