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Abstract

Leaky Lamb waves are elastodynamic quasi-guided waves propagating in plates which are in contact with a fluid. They are usually
perceived and studied as perturbations to waves in the free plate. Recent advances in solving the nonlinear eigenvalue problem
that describes these waves allow to reliably and efficiently obtain all solutions. The resulting wavenumbers in the plate and in
the fluid as well as the wave field account for the exact fluid-structure interaction. A classification of the solutions based on the
transversal wavenumber spectrum is proposed. The properties of each kind of quasi-guided wave are discussed. Moreover, we
analyze the relationship between radiation rate and attenuation. The free, perfectly elastic plate exhibits wave propagation without
losses. Nontheless, attenuated modes exist in this case and are known as nonpropagating modes. We show that – in contrast to the
free plate – attenuation of waves is solely due to radiation, that all waves propagate energy and that subsonic radiation is possible.
The radiation rate of the waves can be calculated using their eigenvector. This allows to split the total attenuation of waves in
viscoelastic plates into a contribution due to radiation and one due to damping. Lastly, we present and discuss the dispersion curves
of a strongly fluid-loaded plate.
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1. Introduction

Thin structures act – intentionally or unintentionally – as me-
chanical waveguides. Modeling and analysis of these waveg-
uides has become important in nondestructive testing and ul-
trasonic sensor design. The interaction of the structure with an
adjacent fluid is thereby often of utmost importance for sensor
and nondestructive testing applications [1].

The fluid-coupled plate is the simplest of all open mechani-
cal waveguides and it is a very adequate prototype to study the
physical properties of leaky guided waves. We call the wave-
guide “open” because energy may be exchanged with the sur-
rounding infinite fluid domain. Consequently, most waves in
this system do not conserve the energy within the mechani-
cal structure as they propagate and we call them quasi-guided
waves. The waves that supply energy to the fluid domain are
referred to as leaky waves.

Classically, fluid-loading of plates was studied by perturba-
tion of the free plate solutions [2–6]. This only represents
a good approximation for “slightly fluid-loaded” plates, i.e.,
when the mechanical parameters of the plate and the fluid ex-
hibit a strong mismatch. Exact solutions of the frequency-
dependent wavenumbers of leaky Lamb waves have been stud-
ied by zero-finding of the transcendental characteristic equa-
tions [4, 7–11]. More recently, solution methods based on
discretizing the nonlinear eigenvalue problem have been pre-
sented [12–14]. Alternatively, fluid-coupled plates can also
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be studied using Perfectly Matched Layers [15, 16], which
yields some solutions of the finite but open domain problem
(trapped and leaky waves) mixed with those of the infinite do-
main problem (trapped waves and radiation modes) [15]. Only
few studies exist that explicitly examine the wave field and en-
ergy flux of leaky Lamb waves, concentrating mainly on back-
ward waves [17–19].

Recently we presented a numerical solution methods that en-
ables us to reliably find all solutions as a full set of eigenvalues
(wavenumbers) and eigenvectors (wave field) [12]. Coupling
a mechanical waveguide to a surrounding fluid fundamentally
changes the plane harmonic waves solutions, both from a phys-
ical and a mathematical point of view. This contribution relates
the exact and complete solutions of the fluid-coupled plate to
the well-known free plate solutions. The analysis is performed
mainly from a physical point of view. In particular, a detailed
analysis relates the acoustic radiation to the complex wavenum-
ber spectrum – an important step that is missing in the litera-
ture, presumably because it “seems natural” to obtain a complex
wavenumber spectrum. Moreover, we propose a classification
of the quasi-guided waves based on the transversal wavenum-
bers.

Before introducing the concept of quasi-guided waves in Sec-
tion 3, we provide a short review of Lamb waves in a free plate
in Section 2, which serves as reference for the upcoming discus-
sions. Section 4 examines general properties of quasi-guided
waves, introduces a classification and explicitly discusses each
kind of solution. Section 5 relates the radiation properties of
leaky waves to the wavenumbers on a physical basis. Thereby,
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Figure 1: Comparison of the wavenumbers of a 1 mm thick brass plate: (a)
traction free plate, (b) plate in contact with water on one side. The evanescent
waves have been classified into “lowly attenuated” (l.a.) and “highly attenu-
ated” (h.a.) with a threshold of 0.2 Np/mm for comparison only.

fundamental differences to the free plate solutions are revealed
and discrepancies to standard (approximative) analysis proce-
dures are discussed. Lastly, we extend the leaky wave discus-
sion to dissipative plates and to strongly-fluid loaded plates in
Section 6 and Section 7, respectively.

2. Review of the free plate spectrum

Throughout this contribution, the solutions of the fluid-
coupled plate will be compared to the ones of the free plate,
i.e., without traction at the surfaces. For the sake of refer-
ence, the well-known Lamb wave solutions of the free plate will
be presented shortly [2, 20, 21]. Their frequency-dependent
complex wavenumbers kx( f ) – called the spectrum – consti-
tute a set of curves in the three-dimensional space [ f × Re kx ×
Im kx] [21], where “Re” and “Im” refer to the real and imag-
inary parts, respectively. Each curve corresponds to one nor-
mal mode [2, 22, 23], i.e., the solutions form an orthogonal ba-
sis able to represent any arbitrary field inside the plate. The

projection of the dispersion curves of a 1 mm thick brass plate
(Young’s modulus E = 110 GPa, Poisson’s ratio ν = 0.34, mass
density ρ = 8440 kg/m3) onto the [ f × Re kx]-plane is shown
in Fig. 1a. Throughout this paper, we will restrict the discus-
sion to solutions that propagate energy in positive x-direction.
Only these solutions are shown in Fig. 1 and all other graphs,
although corresponding waves carrying energy in the opposite
direction exist due to the geometric symmetry of the problem.

The spectrum of the free plate splits into a finite number of
propagating or guided modes (Fig. 1a, ) and an infinite num-
ber of nonpropagating or evanescent modes [24] (Fig. 1a, ).
While the former propagate energy, the latter are character-
ized by zero energy velocity/group velocity [2, 24]. Addi-
tionally, the nonpropagating modes always exhibit attenuation,
i.e., Im kx > 0, while the propagating modes have real-valued
wavenumbers [24]. The propagating modes are actual waves,
while the nonpropagating modes represent local vibrations of
the plate [25, 26], i.e., vibrations in the near-field of a source.

Waves with positive Re kx have a positive phase velocity cp =

ω/Re kx and are called forward waves. But waves with nega-
tive wavenumber Re kx also exist and they are called backward
waves [24] because their phases propagate in the opposite di-
rection as compared to the propagation of energy. Solutions
with zero wavenumbers are also found. These represent uni-
form vibrations of the entire plate and their wavelength tends to
infinity [27].

3. Quasi-guided waves in fluid-coupled plates

hguided wave
kx

kx

kf = ω/cf

√
k2

f − k2
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θ

plate
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~ex
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Figure 2: Cross-sectional detail of the plate with thickness h and infinite extend
in the x-z-plane. The plate is in contact with a fluid at the bottom.

Let us consider the geometry depicted in Fig. 2. The plate
of thickness h and otherwise unbounded extend consists of a
homogeneous and isotropic solid material. The solid layer is in
contact with an infinite fluid domain on the bottom surface. It
is straight forward to extend the problem to fluid coupling on
both sides. The wave motions are purely in the x-y-plane, i.e.,
a plane strain state [28, 29] is assumed. Due to the translational
symmetry in time t and the spacial coordinate x, it is possible
to seek mechanical displacements ~u of the form [30]

~u = ~u(y) ei(kx x−ωt) , kx ∈ C , ω, x, t ∈ R . (1)

This reduces the corresponding equations of free motion to
an eigenvalue problem on the one-dimensional domain y ∈
[−h/2,∞) parameterized in the angular frequency ω = 2π f and
the complex wavenumber kx. We consider kx to be the eigen-
value and ~u(y) the eigenfunction, while ω is a free parameter.
The possible combinations of ω and kx values are called the
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dispersion curves and they are described by the dispersion re-
lation [2, 31].

Two non-equivalent and conceptually different approaches
exist to find a dispersion relation and the corresponding eigen-
functions [15, 30, 32]. The first one considers the infinite fluid
domain in addition to the plate as described above. This yields
the “modes of the universe” [32, 33], which involves a contin-
uous set of radiation modes as well as a discrete set of trapped
modes [15, 32]. This uncountable infinite modal basis is capa-
ble of fully describing the wave field and its dynamics in both
the plate and the fluid domain. However, the resonances of the
plate – which are of interest in nondestructive testing and sensor
applications – remain hidden in the continuum of the radiation
modes [32, 34].

The second model restricts attention to the plate itself by
considering only its interaction with the fluid. It gets rid of
the surrounding fluid domain by imposing appropriate bound-
ary conditions [32, 33] on the plate’s domain. This results in a
non-conservative system with a discrete set of eigensolutions,
namely the quasi-guided waves. The solutions do not represent
modes in the usual sense [30] – although they might when in-
troducing appropriate concepts [32] – a matter that is outside
the scope of this paper. They are – at least – resonances that
strongly dominate the overall wave field [30, 34] and are easier
to deal with as compared to the continuous spectrum of the in-
finite domain. The concept of quasi-guided waves is the more
appropriate one for nondestructive testing and sensor applica-
tions because the transmitter and receiver are usually both situ-
ated on the plate, which in this formalism is described without
the cluttering of modes related to the exterior [16, 32, 34].

In a previous publication by the authors [12], the model-
ing and solution procedure to compute the quasi-guided waves
has been explained in detail. The idea is sketched briefly
in the following. It consists in reducing the infinite domain
y ∈ [−h/2,∞) to the finite domain y ∈ [−h/2, h/2] ∪ ∂Ωf ,
where ∂Ωf represents the fluid boundary interfacing the plate.
This is achieved by assuming a-priori an inhomogeneous plane
bulk wave [35] in the fluid half-space, i.e., ~u(y) ∼ A eikyy on
y ∈ (h/2,∞), where ky ∈ C is the transversal wavenumber
and the amplitude A is the new scalar degree of freedom. The
complex wave vector in the fluid domain is, hence, given by
~kf = [kx, ky]T . Imposing appropriate interface conditions be-
tween the plate’s domain [−h/2, h/2] and the fluid domain ∂Ωf ,
results in a frequency-dependent nonlinear, differential eigen-
value problem [12, 13] for the wavenumbers kx and the eigen-
functions [ux(y), uy(y), A]T of the quasi-guided waves. After
discretization, an algebraic nonlinear eigenvalue problem of the
form [12]

(
k2

xA
2

+ kxA
1

+ A
0

+ i
√

k2
f − k2

xB
)

q = 0 (2)

has to be solved, where A
2
, A

1
, A

0
and B are constant matrices

and kf = |~kf | = ω/cf ∈ R. The solution technique is based
on a trigonometric change of variable, namely kx = kf

γ+γ−1

2 ,
which enables us to linearize the eigenvalue problem in the vari-
able γ. Remarkably, the employed procedure does not only map

γ uniquely to kx, but also to the transversal wavenumber via
ky = kf

γ−γ−1

2i [12].

4. General properties and classification of quasi-guided
waves

The eigensolutions of the same brass plate as in Section 2
but coupled on one side to water (inviscid, longitudinal wave
speed cl = 1480 m/s, mass density ρ = 1000 kg/m3) has been
computed with the described numerical method. The real part
of the resulting wavenumbers is displayed in Fig. 1b for com-
parison with the free plate. In contrast to what is often as-
sumed, the high similarity of the wavenumbers of guided and
quasi-guided waves is not a general feature, but rather a prop-
erty of the “slightly fluid-loaded” plate. We chose this example
because it facilitates a comparative discussion of guided and
quasi-guided waves. Moreover, we have split evanescent waves
into “lowly attenuated” (l.a., ) and “highly attenuated” (h.a., )
for the sake of discussion only. The threshold in attenuation
is arbitrary and it has been chosen as 0.2 Np/mm for the given
example. Otherwise, the same coloring scheme is used in all
figures comparing guided and quasi-guided waves. With this in
mind, the transition in the nature of waves due to fluid-loading
is clearly visible in Fig. 1 and will be discussed in detail af-
ter pointing out the general properties of the obtained solutions.
The imaginary part Im kx of the wavenumbers has a concep-
tually different physical interpretation as in the free plate case
and will be discussed in Subsection 5.2, where they are plotted
in Fig. 10.

The eigenfunctions [ux(y), uy(y), A]T that describe the wave
field are also obtained by solving the eigenvalue problem. In
contrast to the free plate, the complex displacement distribu-
tions ux(y) and uy(y) in the plate are no longer exactly out
of phase [19], accounting for loss of energy to the fluid do-
main. The geometrically asymmetric setup along ~ey leads to
asymmetric solutions. In case of slight fluid loading, ux(y) and
uy(y) will still be “predominantly” odd or even in the sense of
a decomposition. Therefore, we choose to label the eigenso-
lutions of the water-coupled brass plate with the conventional
scheme used for symmetric and anti-symmetric Lamb waves
but marked with a ’ (see Fig. 1b).

Two representative eigenfunctions are shown in Fig. 3. Note
that the field in the fluid domain is determined indirectly by
the harmonic extrusion ~uf(y) = i[kx, ky]T A eiky(y−h/2) according
to the plane wave assumption. This fact is essential because it
allows us to compute and represent the exponentially increasing
field of the leaky wave seen in Fig. 3a. Diverging wave fields
in the transversal direction are a well-known property of leaky
waves [14, 15, 30, 34, 36–39] and is a direct consequence of
lossless wave propagation in the fluid, as will be discussed in
Section 4.2.

In principle, the y-dependent eigenfunctions are sufficient to
describe the plane harmonic wave field. For the purpose of visu-
alization, the wave field can be extruded to the whole x-y-plane
using (1). This has been done for the modes marked in Fig. 1b
and the resulting displacement fields are shown in Fig. 4.
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Figure 3: Transversal displacement distributions of waves radiating into an in-
viscid fluid: (a) forward wave A0’ at 1.5 MHz, (b) backward wave S1b’ at
2 MHz.

Due to the non-unique relationship between kx and ky, a full
description of the dispersion spectrum additionally requires the
transversal wavenumbers ky – these are plotted in the complex
plane in Fig. 5. Note that the real and imaginary parts of kx

and ky are related to each other because plane inhomogeneous
waves in an inviscid fluid are known to be restricted to transver-
sal attenuation [35], i.e., along their wave fronts as shown in
Fig. 6. This is a consequence of their dispersion relation, given
by ~kf · ~kf = ω2/c2

f ∈ R [31]. This immediately implies that
Re~kf · Im~kf = 0. Hence, the attenuation vector Im~kf is always
orthogonal to the propagation vector Re~kf .

The transversal wavenumbers are not only required to de-
scribe the wave field, but are also convenient to classify the so-
lutions. Depending on the far-field behavior, the quasi-guided
waves of the fluid-coupled plate can be classified into three kind
of waves:

1. Guided/trapped waves: Re ky = 0 and Im ky > 0
2. Leaky/evanescent waves: Re ky > 0
3. Incoming waves: Re ky < 0

The corresponding regions of the complex ky plane are in-
dicated in Fig. 5, where the leaky waves have been divided
again into forward and backward waves (discussed later on).
Note that it would also be possible to perform the classifica-
tion using the wavenumbers kx, but only after distinguishing
between waves that propagate energy in positive and in nega-
tive x-direction. Each kind of wave will be discussed separately
in the following.

4.1. Guided waves

Properly guided waves of fluid-coupled waveguides are also
called trapped waves [15]. They have purely real wavenum-
bers kx and propagate along the plate without attenuation.
These are the only solutions that carry energy towards x →
∞ without external supply of energy [18]. As they do not
exchange energy with the fluid medium, their transversal
wavenumber ky must be purely imaginary. We suggest that only

(a) A0’ at 0.6 MHz (b) S0’ at 1.4 MHz

(c) A1’ at 1.9 MHz (d) S1’ at 2.1 MHz

(e) A2’ at 3.4 MHz (f) S2’ at 3.0 MHz

(g) QS at 0.5 MHz (h) S1b’ at 2 MHz

Figure 4: Wave fields of the eigensolutions marked in Fig. 1b. The color indi-
cates the uy displacement.

solutions with Im ky > 0 should be considered physically mean-
ingful and are termed “guided” ( ) in this paper and in Fig. 1b.
In this case, the wave field decays with distance to the plate and
is confined to its proximity [40], as can be observed in Fig. 4g.

For a plate with single-sided slight fluid loading, one guided
wave is known and is referred to as Quasi-Scholte wave (QS
mode) or A-wave in the literature [40–42] ( in Fig. 1b and
Fig. 5a, as well as Fig. 4g). Note that for double-sided fluid
loading, a second Quasi-Scholte wave exists, which is some-
times termed the S-wave [9, 41, 43]. More guided waves may
exist in plates with stronger fluid loading, as will be shown in
Section 7.

Guided wave solutions with Im ky < 0 also exist and are re-
ferred to as “unlikely” ( ) in Fig. 1b. These physically unlikely
solutions appear in the literature [4, 9, 44–46] but their nature
is not understood and their existence could not been confirmed
experimentally [46]. The fact that they show a diverging wave
field in transversal direction is not sufficient to discard the solu-
tions for two reasons: (1) Leaky waves also have this property
and (2) the open domain solutions are not able to exactly repre-
sent the wave field in the fluid domain anyway. In the dispersion

4
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Figure 5: Transversal wavenumbers ky( f ) in the complex plane indicating the
classification of waves: (a) right half of the symmetric ky-plane, (b) zoom into
the shaded region in (a). The quadrants marked “backward waves” and “for-
ward waves” correspond both to leaky waves.

diagrams they tend to form loops, sometimes in conjunction
with proper guided wave solutions. For this reason they have
been discussed as real-valued loops in the literature [44]. It
should be mentioned that the physically unlikely solutions and
the guided modes are indistinguishable by solely inspecting the
kx-spectrum. This reveals the importance of the ky-spectrum
when classifying the solutions and this is presumably the rea-
son why no discrimination has been made in the literature pre-
viously.

4.2. Leaky waves

Leaky or evanescent waves are attenuated along the plate,
i.e., Im kx > 0. Often only the “lowly attenuated” evanescent
waves are referred to as leaky Lamb waves in the literature [8].
Nevertheless, in this contribution we use the term leaky Lamb
waves to refer to all evanescent waves in the fluid-coupled plate
because – as will be shown – they all leak energy into the fluid
and these waves are otherwise physically indistinguishable.

Leaky waves can also be characterized through their transver-
sal wavenumber ky, as their real part must be positive – carry-
ing energy away from the plate. While backward leaky waves
are located in the open first quadrant of Fig. 5a, forward leaky
waves can be found in the open fourth quadrant. This means
that the wave field decreases exponentially with distance to the
plate for backward waves, but increases for forward waves as
has already been mentioned – observe this behavior by inspect-
ing the displacement structures in Fig. 3a.

To understand the exponential growth in transversal direc-
tion, consider the leaky forward wave being attenuated in pos-
itive x-direction as sketched in Fig. 6a. The radiated acoustic
wave propagates in the inviscid fluid without attenuation in di-
rection Re~kf , which forms positive angles with respect to ~ey.
Hence, if the wave field gets attenuated along ~ex, than its ampli-
tude must increase along ~ey. The opposite is true for backward
waves, whose Re~kf form negative angles with ~ey. This situation
is sketched in Fig. 6b. Backward waves that propagate energy
in ~ex are also attenuated in this direction. At the same time

plate

fluid

energy

Im~kf

kx

ky

Re~kf

~ex

~ey

(a)

energy

Im~kf

kx

ky

Re~kf

~ex

~ey

(b)

Figure 6: Wave vector components in the fluid half space for (a) forward wave
A0’ at 1 MHz and (b) backward wave S1b’ at 2.1 MHz. The black arrow’s
length indicate the propagation constants, i.e., the real parts, while the change
in the arrow’s thickness illustrate the change in acoustic amplitude, i.e., the
imaginary parts. Additionally, the total attenuation vector Im~kf is also drawn.

they exhibit negative Re kx and, hence, the acoustic field must
decrease with distance to the plate.

4.3. Incoming waves
In the context of scattering problems, incoming waves are

usually discarded a-priori by imposing a radiation condition on
the open domain problem [32]. Our solution method simply
couples the plate to an inhomogeneous plane wave in the fluid,
which might be incoming (carries energy towards the plate) or
outgoing (carries energy away, i.e., leaky waves), hence both
types of solutions are obtained. Incoming waves describe the
excitation of a quasi-guided wave inside the plate due to an in-
cident ultrasonic wave [6]. They are the reciprocal solutions
to the leaky waves, featuring complex conjugate wavenumbers
kx. For clarity, they have been omitted in all figures. Due to
the supply of energy from the fluid domain, the quasi-guided
wave’s amplitude inside the plate increases along the direction
of energy propagation. Incoming waves have negative Re ky

and they would be located in the omitted open left half-plane of
Fig. 5a.

5. Radiation of leaky Lamb waves

Radiation is a mode-conversion process, by which elastody-
namic waves inside the plate generate an acoustic wave in the
adjacent fluid domain. In this section, we will analyze the ra-
diation of leaky Lamb waves, which is of relevance to many
applications considering these kind of waves. To characterize
the radiated waves, we will use the radiation angle and the ra-
diation rate.

5.1. Radiation angle
The used solution method provides both wavenumber com-

ponents kx and ky. As the phase fronts of the plane wave in the
fluid are described by Re~kf , the radiation angle θ with respect
to the plate’s normal ~ey can be obtained with (see Fig. 2)

θ = arctan
(

Re kx

Re ky

)
. (3)

The resulting radiation angles are displayed in Fig. 7. Note that
negative radiation angles correspond to backward waves.
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Definition (3) ensures real-valued radiation angles and
is equivalent to θ = Re{arcsin(kx/kf)}, given the fact that
Re~kf ⊥ Im~kf . However, note that using only the real
part of the wavenumber, i.e, θpert = Re{arcsin(Re kx/kf)} =

Re{arcsin(cf/cp)} – which is often done [5, 6, 20, 23] – is strictly
speaking not valid. Naturally, this still yields good approxima-
tion for the lowly attenuated modes.

5.2. Radiation rate

The relation between attenuation and rate of energy leakage
is discussed in the following. Even a free and lossless plate
exhibits attenuated modes, as has been discussed in Section 2.
Therefore, the question arises, whether such local vibrations –
whose attenuation is not related to radiation nor damping – do
exist in the fluid-coupled plate as well [10].

We can describe the leakage of energy using the eigenfunc-
tions ~u(y) and balance of power flux across a section of the wa-
veguide as depicted in Fig. 8. Per propagation length dx, a frac-
tion of the total local elastodynamic power flux Px(x) inside the
plate is radiated as acoustic power dPr. This leads to an expo-
nential decay of the wave field due to radiation, i.e., ~u ∼ e−αx

and Px(x) ∼ e−2αx. We call α the radiation rate and it character-
izes how fast energy leaks from the plate into the adjacent fluid.
Because we compute α using the power flux through the plate’s
boundary, it does indeed only represent attenuation due to leak-
age. The total attenuation is given by Im kx = α + β, where β
is attenuation due to other reasons. In the following, we show
numerically that β = 0 for all solutions of the nondissipative
plate.

Px0 Pt

dPr

dx

~ex

~ey

Figure 8: Balance of power flux inside a plate section.

In general, the average power flux density is given by the real
part of the elastodynamic Poynting vector Re ~I [31, 47]. These
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Figure 9: Poynting vectors ~I0(y) indicating the average local flux of power
in magnitude and direction for (a) free plate S0 at 2 MHz mm and (b) water-
coupled plate S0’ at 2 MHz mm. The plate is located in between y = −0.5 mm
and y = −0.5 mm.

vectors are displayed exemplarily in Fig. 9 and they character-
ize the local magnitude and direction of power flux. As ex-
pected, the power is confined within the free plate (Fig. 9a), but
it may flow across the plate-fluid interface (Fig. 9b). Using the
stiffness tensor c of the plate’s material, the Poynting vectors
are obtained as [31, 47]

~I(x, y) =
iω
2
~u(x, y) · c : ∇~u∗(x, y) . (4)

Let ~I0(y) = Re ~I(0, y). The total time-averaged power flux
through the plate in x-direction is obtained by integrating over
the plate’s cross section, i.e.,

Px0 =

∫ h/2

−h/2

~I0(y) · ~ex dy . (5)

For the differential section dx of the waveguide at x = 0, we
can assume that

Pt = Px0 +
∂Px(x)
∂x

∣∣∣∣∣
x=0

dx = Px0 − 2αPx0 dx (6)

and
dPr = ~I0(h/2) · ~ey dx . (7)

The balance of power flux Px0 = Pt + dPr results in

dPr = ~I0(h/2) · ~ey dx = − ∂Px(x)
∂x

∣∣∣∣∣
x=0

dx , (8)

i.e., the amount of power leaking into the fluid is equal to the
decrease in power flux along the plate. Rearranging, we find
that the radiation rate of leaky waves is

α =
~I0(h/2) · ~ey

2Px0
. (9)

This calculation has been performed for all evanescent waves
and the result is displayed together with the imaginary part
of the wavenumbers in Fig. 10. Note the change in scale at
0.2 Np/mm for better visualization. The analysis leads to the
following three findings:

5.2.1. Equivalence of attenuation and radiation rate
In Fig. 10, the radiation rate α coincides exactly with the

imaginary part of the wavenumber spectrum, even for the
evanescent waves with “high attenuation”. It can be concluded
that attenuation of quasi-guided waves in lossless media is al-
ways due to radiation.
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Figure 10: Comparison of the attenuation Im kx and the radiation rate α as
calculated by (9). For clarity, the plot has a change in scale at 0.2 Np/mm.
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Figure 11: Energy velocity ce of the water-coupled plate: modes with zero-
energy velocity do not exist.

5.2.2. Nonexistence of nonpropagating waves
We observe that all waves have a well defined radiation

rate α. According to (9), their power flux Px0 must be non-
zero, which means that – in contrast to the free plate – non-
propagating modes do not exist. This result is analogous to
the finding for lossy plates [24] and can be confirmed by in-
specting the energy velocity ce. We define the energy velocity
as [14, 17, 19, 48]

ce =
Px0

H0
, (10)

where H0 = H(x = 0) denotes the time-averaged total stored
energy inside the plate at x = 0. It is obtained as the sum of
kinetic energy K0 and elastic energy E0, i.e.,

H0 = K0 + E0 , (11)

with

K0 = Re
∫ h/2

−h/2

ρω2

4
~u · ~u∗ dy (12)
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Figure 12: Radiation rate α of a 1 mm thick aluminum plate in contact on one
side with water. Radiation extends well below the coincident frequency fc.

and

E0 = Re
∫ h/2

−h/2

1
4
∇~u : c : ∇~u∗ dy . (13)

The explicit computation of (13) is often avoided by exploiting
the principle of equipartition of energy in lossless media [31],
which states that K0 = E0. However, equipartition of energy
does not hold for the open system under analysis [17]. Note
also that in the above definition, only the plate is being consid-
ered part of the waveguide. It is still unclear if it is appropriate
to neglect the fluid domain in the definition of energy veloc-
ity [17]. Nonetheless, it is deemed adequate to characterize the
propagation of energy inside the plate [14, 17].

The energy velocity according to (10) has been computed for
all eigensolutions and is plotted in logarithmic scale in Fig. 11.
Contrary to the free plate, the energy velocity goes to zero only
for singular points on the dispersion curves and, strictly speak-
ing, zero-energy velocity modes do not exist. However, the
present example is a “slightly fluid-loaded” plate and the en-
ergy velocity of the “quasi-nonpropagating” branches is very
low, being consistent with the free plate model in the limit.

While the spectrum of the free plate splits clearly into prop-
agating and nonpropagating modes, the eigensolutions of the
fluid-coupled plate do not. Instead, the waves with high atten-
uation should be considered a continuation of the lowly attenu-
ated ones – analogous to the finding by Simonetti and Lowe for
free but lossy plates [24]. This is an important difference in the
nature of the eigensolutions of the free and the fluid-coupled
plate, as nonpropagating modes do not exist at all.

5.2.3. Subsonic radiation
It is often assumed a-priori that a guided wave with sub-

sonic phase velocity, i.e., cp = ω
Re kx

< cf , where cf is the
fluid’s wave speed, does not radiate an acoustic wave into the
fluid [3, 7, 10, 14, 18, 20, 23, 45]. The above analysis rebuts this
assumption. As an example, let us take a look at the radiation
rate of an aluminum (E = 70 GPa, ν = 0.33, ρ = 2680 kg/m3)
plate in contact on one side with water as depicted in Fig. 12.
The coincident frequency, i.e., the frequency where the A0-
mode of the free plate features the same phase velocity as the
speed of sound in the fluid, has been marked in the figure. Be-
low this frequency we find the subsonic region of the A0’-mode
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Figure 13: Viscoelastic 1 mm thick brass plate with single-sided water contact:
comparison of the total attenuation Im kx and the radiation rate α as calculated
by (9). For clarity, the plot has a change in scale at 0.2 Np/mm.

and it can be observed that an acoustic wave is indeed radiated
below coincidence. This is in agreement with previous find-
ings [4, 49] and demonstrates that the concept of cut-off at the
coincident frequency is merely an approximation and the result
of a first-order perturbation of the free plate solution. For an ac-
curate analysis of radiation it is necessary to actually solve the
nonlinear leaky Lamb wave eigenvalue problem, as has been
done in this contribution.

6. Viscoelastic plate coupled to water

As was shown above, for a perfectly elastic fluid-coupled
plate, attenuation is solely due to radiation. This no longer
holds for a lossy plate because damping of the plate’s material
leads to additional attenuation and an altered radiation rate. In
order to demonstrate that this behavior can be considered with
the presented modeling approach, we computed the leaky Lamb
eigenvalue problem for a 1 mm thick brass plate with hysteretic
damping [50, 51] (Young’s modulus E = 110(1− i0.0025)GPa,
Poisson’s ratio ν = 0.34, mass density ρ = 8440 kg/m3).
Fig. 13 displays the resulting attenuation Im kx and the corre-
sponding radiation rate α according to (9). As before, α is
solely a consequence of leaked energy and, hence, characterizes
the radiation process. Therefore, the radiation rate α allows to
distinguish between the contributions of radiation and damping
in the total attenuation Im kx. Note that even for the lossy plate,
it is sufficient to characterize leaky waves through Re ky > 0, as
it is equivalent to demanding a positive energy flux across the
plate’s boundaries, i.e., Re ~I0(h/2) ·~ey > 0. It would not be pos-
sible, however, to separate leaky waves from incoming waves
based solely on the wavenumbers kx.
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Figure 14: Comparison of the wavenumbers of a 1 mm thick PMMA plate: (a)
traction free plate, (b) plate in contact with water on one side.

7. Strongly fluid-loaded plate

In general, the eigensolutions of the free and the fluid-
coupled plate differ substantially. As our numerical solution
procedure considers an exact plate-fluid interface condition, we
are able to compute the exact eigensolutions of strongly fluid-
loaded plates. Consider exemplarily a Poly(methyl methacry-
late) (PMMA, acrylic glass) plate (Young’s modulus E =

6.17 GPa, Poisson’s ratio ν = 0.32, mass density ρ =

1190 kg/m3) coupled at one side to water. Note that in this
case, the wave speed of transversal bulk waves ct in the plate is
lower than the fluid wave speed cf . The resulting wavenumbers
are displayed in Fig. 14b. Notice that the dispersion curves
turn out to be quantitatively as well as qualitatively very dif-
ferent to the free plate’s spectrum shown in Fig. 14a. For this
reason, we no longer adopt the classification into “lowly attenu-
ated” and “highly attenuated” waves. Above certain frequency,
modes split into two real-valued branches that come close to
each other for f → ∞ and have, therefore, also been denoted as
real-valued loops [44]. We remark that the lower branch lies on
the negative imaginary line of the ky-plane and we consider the
solutions to be physically unlikely (Fig. 14b, ). The same holds
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for the first segment of the upper branch, while the following
segment is a common guided wave solution (Fig. 14b, ). This
transition occurs where the phase velocity exhibits a maximum.

The above theoretical findings are in accordance with ex-
perimental results by Rostyne et al. [46]. However, for the
best of the author’s knowledge, the “higher-order Quasi-Scholte
modes” have not been discussed in the literature previously.
Note that in the far field of a source only the guided waves
( ) and the leaky waves with low attenuation (dark color) are
measurable inside the plate.

8. Conclusion

We discussed the dispersion curves and the wave field of
plane harmonic waves in an elastic plate coupled to an invis-
cid fluid. The eigensolutions have been computed by solving
the nonlinear leaky Lamb eigenvalue problem, which accounts
for the analytically exact plate-fluid interaction. We find truly
guided modes (trapped waves) that do not radiate into the fluid
and are confined within the proximity of the plate. All other
waves either radiate energy into the fluid (evanescent/leaky
waves) or excite a wave inside the plate (incoming waves). We
showed that the attenuation of waves in lossless media is always
and solely due to radiation, that nonpropagating modes do not
exist in the fluid-coupled plate, and that subsonic radiation is
possible. The wave field’s properties are strongly linked to the
radiation rate and whether the wave is a forward or a backward
wave.

Further studies could clarify the effect that damping inside
the plate and/or the fluid domain has on the nature of quasi-
guided waves. The nonpropagating modes of the free plate
gain meaning through fluid-loading or damping. In a similar
way, the physically unlikely solutions of a fluid-coupled plate
could gain physical significance by adding appropriate material
damping to the model.
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