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Simulation-Based Characterization of Mechanical
Parameters and Thickness of Homogeneous

Plates Using Guided Waves
Michael Ponschab , Daniel A. Kiefer , and Stefan J. Rupitsch , Member, IEEE

Abstract— Properties of isotropic plates in terms of material
constants and thickness are characterized by making use of
dispersion characteristics of propagating Lamb waves. A numer-
ical model is inversely optimized in order to match dispersion
curves measured by laser vibrometry. This kind of material
characterization has gained interest in recent research. Improve-
ments in accuracy and efficiency of the optimization process are
therefore important steps toward an industrial application of
this technique to nondestructive testing and online monitoring.
For this purpose, the use of a fast converging numerical model
based on spectral collocation has been found to be well suited.
Furthermore, we improved the signal-to-noise ratio by utilizing
long-time broadband excitation signals for multimodal excitation
of Lamb waves. The wavenumber spectrum up to 2.5 MHz is
acquired by measurements with a laser-scanning vibrometer. In
order to exploit the information contained in high-order modes,
we present an algorithm to match the measured data to the
calculated modes during the optimization process, leading to
higher accuracy of the estimated model parameters. The char-
acterization results are verified by comparison to measurements
with a conventional ultrasonic method.

Index Terms— Guided wave, inverse method (IM), Lamb wave,
material characterization, spectral method, ultrasound.

I. INTRODUCTION

AN INCREASING automation of production facilities
entails a demand for new ways of online monitoring. The

sheet metal working industry relies, therefore, often on radio-
metric methods or laser-based triangulation in surveillance
of the processed materials and to detect defects. Ultrasonic
measurement methods provide an attractive alternative and
are well established in the field of nondestructive evaluation
(NDE) for the characterization of layers and structures [1],
as they may not only provide information about the geometry,
but also about the material.

Classical ultrasonic techniques utilize time-of-flight mea-
surements with contact transducers to measure the speed
of sound or the thickness of plates, while the other size
is known [2]. Exploiting reverberation in submerged setups
allows for determining both parameters simultaneously [3],
[4]. Limitations of axial resolution can be countered if a
model-based evaluation of obtained echoes is used [5].
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Other methods are based on the characteristics of guided
ultrasonic waves propagating in plates, which are called Lamb
waves [6]. As in any waveguide, the propagating waves split
into modes of different dispersive wave speeds. These are
depicted by so-called dispersion curves, which depend on
material constants, plate thickness, and frequency and are
therefore suitable to characterize the plate properties. The
characterization process depends on time- and space-resolved
information on the propagating waves.

Early researchers calculated thickness and isotropic elas-
tic constants from time-domain data [7]–[10] analytically.
Later, others used numerical models to inversely characterize
Young’s modulus by making use of the zero-order Lamb
wave modes [11], [12]. For the characterization of orthotropic
elastic materials, a method based on image processing making
use of high-order modes has been investigated in recent
years [13], [14]. With the use of appropriate material models,
Bause et al. [15] were able to characterize a viscoelastic
cylindrical waveguide. An interesting approach, which does
not require space-resolved data, is to exploit modes with
group velocity tending to zero. Clorennec et al. [16] showed
how these points of no energy spreading can be exploited by
a laser-based measurement to determine the material’s bulk
velocities. Grünsteidl et al. [17] extended the method by mod-
ulating the laser spot in order to additionally obtain the plate
thickness.

This study aims at improving the aspects of data acqui-
sition, modeling the guided wave problem, and optimization
algorithm. Most forenamed authors rely on pulse excitation
of Lamb waves. We suggest working with long-time broad-
band signals instead, as their greater time–bandwidth product
leads to a better signal-to-noise ratio [4]. For this purpose,
a variable-angle wedge transducer is applied. Together with a
reception by laser interferometry with high spatial resolution,
this results in sharp distinctive dispersion curves. The high
sample rates of the used laser-scanning vibrometer enable
the acquisition of high-order Lamb modes. We present an
algorithm to sort the extracted measurement data points and
the model output to corresponding modes in order to be
able to apply a highly effective optimization algorithm for
multiple model parameters, while improving the accuracy of
the estimated plate parameters. Speeding up the optimiza-
tion process is an important step toward usage in industrial
applications. Modeling the guided wave problem with spectral
collocation [18] allows for the calculation of the full Lamb
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Fig. 1. Definition of the coordinate system used for modeling the Lamb
wave propagation in the plate.

wave spectrum for 100 frequency points in about 1 s on an
average personal computer, due to spectral convergence rates.

This article is organized as follows. The model for the
calculation of dispersion characteristics is shown in Section II.
Section III deals with the measurement setup used to acquire
time- and space-resolved Lamb wave data. In addition,
the process of extracting data for plate characterization is
explained. The inverse method (IM), fitting the plate model to
the measured data, is the content of Section IV. A parameter
study reveals the importance of including high-order modes
in this process. Results for plates of different thicknesses and
materials are discussed in Section V. A conclusion is given in
Section VI.

II. MODEL FOR GUIDED WAVES

Classically, an analytic model for the propagation of Lamb
waves in a plate results from the so-called characteristic
equation and is found by superimposing reflected partial plane
waves from the plate boundaries [6]. As these characteris-
tic equations are transcendental, root-finding algorithms are
utilized to obtain dispersion relations. However, the root-
finding techniques become cumbersome with more complex
problem setups as multiple layers, anisotropy, and open-
domain problems such as leaky Lamb waves [19]. The main
problem of root-finding algorithms is the possibility of miss-
ing solutions due to the utilized mode tracing as well as
their extensive calculation time. Nowadays, algorithms avoid
these problems by solving the basic differential equations in
a numerical way instead of finding roots of the analytical
model.

An often-used approach is the semianalytical finite-
element (SAFE) method developed by Gavric [20]. Because,
in the propagation direction, periodic wave field is assumed,
the remaining dimensions are meshed with finite elements,
allowing the waveguide to adopt arbitrary cross sections.
Plane or cylindrical geometries are modeled along the single
dimension of the waveguide’s thickness. Especially effective
for such simple systems is the use of Chebyshev spectral
collocation methods (SCMs), which was first adopted by
Adamou and Craster [21] to solve the waveguide problem.
Quintanilla et al. [22] applied the SCM for calculating
anisotropic multi-layer systems. Besides the advantages of
finding naturally all eigenvalues and being robust, the SCM
additionally converges very fast and is easily implemented in
common environments like MATLAB.

For the following mathematical model description, we con-
sider a traction-free homogeneous infinite plate of thickness h.
As shown in Fig. 1, the propagation direction of the inves-
tigated Lamb waves is aligned with the x-direction, while
the finite dimension of the plate thickness is orientated
in y-direction. Along the infinite z-direction, homogeneous

boundary conditions are considered. Therefore, a plane strain
formulation, where the displacements u in x- and y-directions
are independent of z, may be used [23]

u = [ux(y), uy(y), uz(y)]Tej(kxx−ωt). (1)

The elastic wave propagates harmonically with respect to
time t and space according to the angular frequency ω = 2πf
and wavenumber kx. A transposition is denoted by •T. Since
our measurement setup presented in Section III is only capable
of measuring out-of-plane velocities of the plate, solely modes
possessing displacements in the y-direction can be captured.
For isotropic materials, uz decouples from the other two
displacements, which compose the Lamb modes [22]. As only
an isotropic material model is used in this article, uz is
neglected from now on. We note that the presented model can
easily be enhanced in order to deal with anisotropic materials.

The wave propagation inside the plate satisfies Navier’s
equation of motion (nabla operator ∇, material density ρ)

∇ · [σ] = ρ
∂2u

∂t2
. (2)

For a linear elastic, isotropic, homogeneous medium,
the stresses σ are linked with the strains ε by the constitutive
equation ⎡

⎣ σxx

σyy

σxy

⎤
⎦ =

⎡
⎣ c11 c12 0

c12 c11 0
0 0 c33

⎤
⎦

︸ ︷︷ ︸
C

⎡
⎣ εxx

εyy

2εxy

⎤
⎦ (3)

using Voigt notation and plane strain conditions. The entries
of the tensor C can be calculated from the longitudinal and
transverse wave speeds cl and ct by c11 = ρc2

l , c12 = ρ(c2
l −

2c2
t ), and c33 = ρc2

t . The description of the material by wave
speeds and density is used here, as the wave speeds are part of
the later characterized parameters. With the use of the linear
strain–displacement relation ε = ∇symu (symmetric gradient
∇sym [6]), the equation of motion (2) can be written as

∇ · C · ∇symu = ρ
∂2u

∂t2
. (4)

Since the plate is assumed to be traction-free, the stresses at
the surfaces y = ±h/2 take the form[

σyy

σxy

]
y=±h/2

=
[

c12 c11 0
0 0 c33

]
∇sym[u]y=±h/2 = 0.

(5)

So far, the problem description compromises two second-
order differential equations of motion and four boundary
conditions, containing continuous functions u(y). These have
to be discretized on the problem domain y ∈ [−(h/2); (h/2)].
The SCM makes use of smooth global functions for the
approximation of u(y), which is discretized at N points, the
so-called collocation points yi. For a detailed introduction
to spectral methods, we refer to Trefethen’s book [18] and
the MATLAB suite by Weideman and Reddy [24], which
we used for our implementation. The SCM offers the advan-
tage of expressing a differentiation by multiplication with a
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differentiation matrix. For the transition from continuous to
discretized variables, the following mappings are applied.

1) Displacements: u = [ux(y), uy(y)]T �→ u = [ux, uy]
T.

2) Differential operators: ∂
∂y �→ D

y
and ∂2

∂y2 �→ D
yy

.
3) Constants: c �→ cI .

By substituting (1) and (3) and making use of the differen-
tiation matrices D

y
and D

yy
, each of size [N × N ], and the

[N × N ]-sized identity matrix I , the equation of motion (4)
reads as

L
2N×2N︷ ︸︸ ︷[−k2

xc11I + c33Dyy
jkx(c12 + c33)Dy

jkx(c12 + c33)Dy
−k2

xc33I + c11Dyy

]
u

= ω2

[−ρI 0
0 −ρI

]
︸ ︷︷ ︸

M
2N×2N

u. (6)

The stresses for the boundary equation (5) take the form[
jkxc12I c11Dy

c33Dy
jkxc33I

]
︸ ︷︷ ︸

S
2N×2N

u = 0. (7)

Each row of the system of equations (6) represents the
displacement at one collocation point. The lines 1, N, N + 1,
and 2N define the displacement at the borders. The boundary
conditions are taken into account by replacing those lines of
L in (6) by the corresponding ones of S from (7) and the lines
of M by 0. The resulting system of the form

Au = ω2B u (8)

represents a general eigenvalue problem and can be solved
by inserting wavenumbers and computing the corresponding
angular frequencies. To calculate kx for a given frequency,
the dependence of A on kx in (8) is written as a quadratic
eigenvalue problem of the form

k2
xA2

+ kxA1
+ (A

0
− ω2B) = 0 (9)

by sorting the terms in A by power of kx into separate matrices
A

2
,A

1
, and A

0
. For both problems (8) and (9), effective

solving routines exist. This allows calculating the complete
model m(f, cl, ct, ρ, h) �→ kx(f) with sufficient precision in
a few seconds. Therefore, the described model is well suited
for the purpose of fast inverse material characterization.

III. DATA ACQUISITION

The acquisition of frequency-dependent wavenumbers
requires measurement of space- and time-dependent Lamb
wave data. In this section, we first explain our measurement
setup, followed by a presentation of the processing used to
retrieve the measured wavenumbers.

A. Measurement Setup
For the measurement of dispersion data, different setups

are possible. Generally, one could distinguish between con-
tact [25], [26] and noncontact excitation [25], [14] as well

Fig. 2. Sketch of the measurement setup containing a plate-shaped test
specimen (1), a variable-angle transducer (2) for the excitation, and a laser-
scanning vibrometer (3) for the reception of Lamb waves.

Fig. 3. Dispersion curves acquired by applying a 2-D-FFT to measurement
data from an aluminum plate with 2-mm thickness. Here, an incidence angle
of 20◦ has been used.

as between contact [14], [26] and noncontact reception of
Lamb waves [8], [27]. We chose a contact excitation with a
variable-angle beam transducer as depicted in Fig. 2. The used
longitudinal wave transducer (C401, Olympus Inc., Waltham,
MA, USA) features a center frequency of 1.1 MHz and
88% fractural bandwidth. As the excitation of Lamb waves
by means of angle beam transducers follows Snell’s law,
Lamb wave modes with phase velocities of cp = cw/sin θi

will mainly be excited [2]. Herein, cw corresponds to the
longitudinal wave speed of the acrylic glass wedge and θi

to the incidence angle. Since it is desirable to have a wide
range of phase velocities available for the material character-
ization, the ability to adjust the beam angle is advantageous.
During the measurements, it was observed that the use of
four incident angles at 10◦, 20◦, 40◦, and 70◦ is sufficient
because the directivity pattern of the ultrasound transducer
leads to a larger range of exciting phase velocities as shown
in Fig. 3. The transducer was placed on an aluminum EN
AW-5754 plate with 2-mm thickness. All experiments were
conducted with a glycerin coupling. Therefore, mainly normal
stresses were transmitted from the transducer to the test plate.
For the excitation of the ultrasound transducer, we utilized an
arbitrary function generator, Keysight 33220A, together with a
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high-speed power amplifier (4005, NF Electronic Instruments,
Yokohama, Japan).

The time-dependent normal surface velocities of propagat-
ing Lamb waves were measured by a laser-scanning vibrome-
ter (PSV-500, Polytec GmbH, Waldbronn, Germany). A line of
389 measurement points with a sampling interval of 0.35 mm
was defined, which theoretically allows for the acquisition of
wavenumbers up to 17.95 mm−1 due to the Nyquist theorem.
The measured time signals were sampled with a rate of
12.5 MHz over the duration of 200 μs. Each recording was
triggered by the function generator. For the reduction of noise,
the time signals of each measurement point were averaged
100 times at a repetition rate of 100 Hz.

The applied excitation signal was designed to cover the
whole transducer bandwidth in order to maximize the received
frequency information. Other research studies rely on pulsed
excitation for this purpose. A disadvantage of such excitation
is that the signal-to-noise ratio may only be increased by
higher excitation amplitudes, which is technically limited.
Coded signals can be used instead to circumvent this limita-
tion [4]. These phase- or frequency-modulated signals provide
a greater time–bandwidth product, which improves the signal-
to-noise ratio. For our purpose, excitation with a pseudo-
random sequence produced good results. Alternatively, chirp
signals could also be considered. The used arbitrary signal
consists of normally distributed zero mean values, which were
sampled at 5 MHz, and features a total duration of 0.1 ms. The
same signal sequence was used during the whole measurement.

B. Processing
The shown measurements contain sampled time- and

space-dependent information about propagating Lamb modes.
Because of the chosen excitation, the modes are superimposed
and they cannot be separated in the time domain. With a
view to tackling this problem, Alleyne and Cawley [25]
suggested using a 2-D fast Fourier transform (2-D-FFT) on
signals measured with two angle beam transducers, while
one transducer was moved in the propagation direction. As a
result of discrete signal processing, leakage may occur, if the
time and spatial signals are not periodic within the sampling
windows. Therefore, we applied window functions in time and
space to reduce this effect. Here, a Tukey window is used for
this purpose. For a finer resolution of the dispersion data, zero
padding is used before performing the 2-D-FFT.

Fig. 3 shows the color-coded amplitudes of the 2-D
Fourier-transformed measurement data for excitation with an
incidence angle of 20◦. The dashed line depicts the theoretical
excited wavenumbers for this angle and frequencies. Naturally,
the Lamb modes are best excited in this area, which are
illustrated by deep dark lines. Also, the two fundamental
modes, as well as the S2 mode, are already visible.

For the extraction of test data, a peak search is utilized.
For each row, a point on the dispersion curves is defined
according to two conditions: 1) a peak must be at least five
times as high as the mean value of this row and 2) a minimum
distance of 200 m−1 between two peaks is prescribed under
the assumption that no mode crossings occur in this frequency
region. The resulting data points are displayed in Fig. 4.

Fig. 4. Extracted measurement points from 2-D-FFT data as shown in Fig. 3
from measurements with multiple incidence angles.

All modes propagating below 2.5 MHz, except the S1 mode,
have been captured. Large wavelengths seem to be difficult to
measure with this setup, which results in noisy data for the S0

mode at small wavenumbers. These are cut off for the inverse
material characterization.

IV. INVERSE METHOD

A convenient way to match measured data with a mathemat-
ical model is by the application of an IM. The basic principle
of this method is to iteratively adjust a set of input parameters
in order to match the model to the test data as best as possible.
From a mathematical point of view, an inverse problem is
the opposite of a direct problem, which refers to a mapping
A : X → Y of causes x ∈ X onto the effects y ∈ Y [28]. For
all causes x, an effect y = Ax can be found. The inverse
problem of finding the causes x = A−1y from measured
effects is a recurring topic for the estimation of system para-
meters and material properties. Unfortunately, this problem
is generally an ill-posed one because the possible solutions
are not necessarily unique and, more importantly, the inverse
mapping is often not stable due to measurement errors and
model incorrectness [23]. Therefore, regularization techniques,
as well as iterative corrections, are indispensable in order to
transform the ill-posed problem to a neighboring well-posed
one, which is suitable for finding the correct causes x [28].

A. Parameter Study

The IM is a tool to determine a set of parameters based on
information contained in model and measurement data. It fails
to estimate the correct parameters when no or not enough
information is available. In order to investigate, if the used
Lamb wave dispersion data are satisfactory for the determina-
tion of the target parameters cl, ct, and h, a parameter study
is consulted. The numerical model is used to calculate a set
of dispersion curves depicted in Fig. 5. For each figure, one
parameter is altered in the range ±10% around the default
values for aluminum and a thickness of 2 mm, while the others
are kept constant. Modes showing greater variations due to
certain parameter changes deliver a more valuable contribution
to the estimation of that parameter.
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Fig. 5. Parameter study on the influence of the searched parameters on the dispersion data. cl is modified in (a) and all other parameters are kept constant.
The same procedure is used in (b) and (c) for ct and h, respectively. Information on the variation of +10% (dark) to −10% (bright) is provided by shading
while different Lamb modes are color coded. (a) Modification of cl. (b) Modification of ct. (c) Modification of h.

An important observation made from Fig. 5(a) is that
the longitudinal wave speed cl has only little influence on
the fundamental modes as well as the first antisymmetric
mode. Subsequently, an estimation of this parameter will be
afflicted with errors, if solely information on these modes is
available for material characterization. The greater impact of
cl on the higher symmetric modes makes a reliable estimation
still possible. With increasing frequency, the fundamental
modes converge to the Rayleigh wave speed cR, which is
approximative linear proportional to ct [29], while the higher
modes converge to ct [2]. Accordingly, the impact of ct on kx

increases with increasing frequency, which is also indicated by
Fig. 5(b). A normalized plot of fh over kxh is dimensionless
and is therefore independent on the thickness h. The parameter
h leads consequently to a shift of the dispersion curves along
a diagonal line. As a conclusion, it could be stated that
all three parameters can be identified simultaneously if the
measurement data on the higher symmetric modes exist.

B. Implementation

For the approximation of the searched parameters p =
[cl, ct, h]T, we use an iteratively regularized Gauss–Newton
algorithm, which has already been found suitable for the
characterization of piezoelectric materials [30]. This algorithm
is based on a Tikhonov function and converges quickly to a
solution while staying stable.

The measured test data qm as well as the simulated
quantities qs(p), each representing the wavenumbers kx, are
gathered in equally sized vectors. During the characterization
process, minimization of their quadratic deviation given by

min
p

Ψ(p) = min
p

‖qs(p) − qm‖2
2 (10)

is performed by a Gauss–Newton method, approaching the
minimum with each step i. The parameter vector is adjusted
stepwise by

p(i+1) = p(i) + c(i) (11)

and the necessary correction for this algorithm is given by [28]

c(i) = −[
J(p(i))TJ(p(i)) + ζ

(i)
R I

]−1

·[J(p(i))TdI(p(i)) + ζ
(i)
R (p(i) − p(0))

]
. (12)

Hereby, I is the identity matrix. The parameter correction
c(i) depends on the deviation of the measured and simulated
quantities

dI(p(i)) = qs(p) − qm (13)

and its first-order derivative

J(p(i)) =
∂dI(p(i))

∂p

∣∣∣∣
p=p(i)

=
∂qs(p(i))

∂p

∣∣∣∣
p=p(i)

. (14)

Furthermore, we exploit Tikhonov regularization to stabilize
an oscillating p. The regularization parameter ζ

(i)
R is reduced

according to ζ
(i)
R = 0.8ζ

(i−1)
R . For a more detailed description

of the used algorithm, one may refer to [28].
In most applications of IMs on material characterization,

the model design and the large number of parameters present
the most challenging tasks. In our case, building of appropriate
quantity vectors of wavenumbers from simulation ks and
measurement km pose greater difficulties. These wavenumbers
are provided as matrices

with sizes Nf × Ns and Nf ×Nm, where Nf is related to the
sampled frequencies and the second dimension accumulates
the wavenumbers of all modes found at this frequencies
for simulation and measurement, respectively. In general,
Nm �= Ns. Because higher modes only occur for frequen-
cies above their cutoff frequency, the matrices are not fully
populated.

In principle, it is desired to arrange the wavenumbers that
are sampled along a range of frequencies and related to a
number of modes in a vector

q =

⎡
⎢⎢⎢⎢⎣

kT
S0 for fS1

0 , . . . , fN

kT
S2 for fS0

0 , . . . , fN

kT
S1 for fS2

0 , . . . , fN

kT
A0 for fA0

0 , . . . , fN

kT
A1 for fA1

0 , . . . , fN

⎤
⎥⎥⎥⎥⎦. (15)
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Fig. 6. Results for the characterization of the properties of a 2-mm aluminum
plate. The calculated dispersion curves with initial parameters p(0) are
deviated about 10% around values from the literature. The results calculated
by parameter characterization (blue) match perfectly with the measurement
data (red).

This task could easily be done for the simulated data due
to the knowledge of the corresponding displacement fields
along the plate thickness and by sorting the wavenumbers
by size. However, sorting the measurement data according
to (15) is troublesome as the necessary information about the
displacement fields is not available for the measurement data.
In addition, the data acquisition is imperfect and, consequently,
parts of the dispersion curves might be missing, as shown in
Fig. 4. Pure sorting of the modes by wavenumber magnitude
will, therefore, be afflicted with errors.

An approach to solve this problem is to sort the simulated
and measured wavenumbers according to nearest neighbors.
The underlying procedure can be summarized as follows.

1) Calculate ks by evaluating the model for Nf frequencies
f , at which km has been sampled.

2) Iterate over occupied entries of km with index
i ∈ [1, Nf ], j ∈ [1, Nm], and qs, qm with index n = ij.

3) For each single k
(i,j)
m and each row k(i)

s , find
Δk(p) = minp∈[1,Ns] |k(i,p)

s − k
(i,j)
m |.

4) If there is a Δk(p) < δ, i.e., smaller than a threshold δ,
assign q

(n)
s = k

(i,p)
s and q

(n)
m = k

(i,j)
m . Otherwise, skip

entry k
(i,j)
m .

This can be used to build the test data qm and a map used
to transform the model data to qs during each iteration step.
Defining a threshold δ assures that only pairs k

(l)
s and k

(j)
m

are considered for the algorithm, which likely refers to the
same mode. Handling the quantities in this manner will work
well if the initial guess p(0) deviates marginally from the
real parameter vector. However, if the divergences are greater
than a few percent, two effects observable, for instance, in
Fig. 6 might prevent a successful material characterization: 1)
the cutoff frequencies of higher modes can lead to situations
during the iteration where the mapping of qs results in
unallocated entries and 2) interceptions of different measured
and simulated modes occur, which are interpreted as fitting
data points.

As a solution, we suggest to adjust qm and qs according
to the described procedure at each iteration step. Therefore,
the forenamed first problem can be avoided as the mapping is
done for each k(i)

s separately. The mapping of wrong (ks, km)
pairs will still occur, but happens less for later iteration steps,
if enough true (ks, km) pairs exist that result in the right p.
An additional advantage of an iterative mapping is that the
threshold δ can be slightly reduced for each step i in the
same manner as ζR according to δ(i+1) = 0.95δ(i), ensuring a
neglect of false data points due to noise at later iteration steps.

Tests with simulated and measured data yield best results
with a regularization ζ

(0)
R = 103 and a threshold δ(0) =

180 m−1. Material parameter values provided by the manu-
facturer, which were altered randomly in the range of ±10%,
are used as initial guess p(0). Because of the huge difference
in the scale of wave speeds and plate thickness, p(0) is
normalized prior to characterization. Convergence is defined
to be reached if ‖d(i)/p(i)‖ < 10−5. Using measurement data
with about 2000 frequency points, the algorithm converges in
approximately 10 iteration steps. The calculation takes about
4 min on an average PC (Intel Core i5-6600, 16-GB RAM).

V. RESULTS

With a view of testing the stability of the proposed para-
meter characterization, we applied the identification procedure
on the simulated as well as the measured data. Fig. 6 shows
the results for the data provided in Figs. 3 and 4. The yellow
dotted lines show the model output for significantly altered
initial guess p(0). The agreement between the resulting blue
dotted curves and the measured orange dotted curves proves
that the algorithm still converges to the correct parameters.
We repeated the calculation with randomly changed start
parameters, which converged in most cases. All converged
cases led to the same set of parameters.

We performed reference measurements to verify the
obtained parameters. A micrometer screw gauge was used
to measure the plate thickness. The accuracy of the gauge
is 0.02 mm. The average of four thickness measurements
at different positions was taken as reference. Standard time-
of-flight measurements with contact transducers were con-
ducted in order to measure the wavespeeds. Longitudinal and
shear waves were excited with an Olympus V112 transducer
(center frequency of 10 MHz) and an Olympus V156 trans-
ducer (center frequency of 5 MHz), respectively. A pulser-
receiver (Panametrics-NDT 5900) was utilized for excitation
and reception.

The parameter characterization and reference measurements
were conducted with four samples: three aluminum plates of
1, 2, and 3 mm thicknesses and a 1 mm brass plate. Table I
lists the obtained values of cl, ct, and h and the relative
deviation in percent related to the reference measurements
in parentheses. These deviations depend on the errors of
the reference measurement combined with the errors of our
proposed method. The sources for errors of the parameter
characterization are identified to depend mainly on the qual-
ity of the measurement point coordinates. The measurement
device reported a precision of 0.1 mm during calibration.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on April 06,2020 at 09:45:45 UTC from IEEE Xplore.  Restrictions apply. 



1904 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 66, NO. 12, DECEMBER 2019

Fig. 7. Results for (a) 1, (b) 2, and (c) 3 mm aluminum and (d) 1 mm brass samples. The sparse dotted curves, plotted over the measured dispersion data,
present the model output for parameters obtained by the IM and reference measurement, respectively.

TABLE I

COMPARISON OF PARAMETERS ATTAINED BY CHARACTERIZATION (IM)
AND REFERENCE MEASUREMENT; DEVIATION IN % IN PARENTHESES

RELATE TO THE REFERENCE MEASUREMENTS

Additional errors were introduced by noise due to low laser
signals because of no or nondiffuse reflection.

It is noted that a higher stability, allowing a greater deviation
of the initial parameters, can be observed, if fewer modes
are used for the identification process. The reason is the rare
false intersection of modes. On the other hand, the parameter
precision will increase, if more modes and, therefore, more
data are available, as shown in Fig. 7(c).

As predicted from the parameter study in Section IV-A,
the longitudinal wave speed is mostly afflicted with the
highest deviation. Still, all errors stay in the range of a few
percent and agree well with the reference measurements.
Remarkably, it is even possible to determine a reasonable

cl for the 1-mm aluminum sample with a 1 MHz centered
excitation in contrast to the 10 MHz reference measurement.
As the deviation decreases with increasing plate thickness
[compare Fig. 7(c)], we attribute the deviation mainly to the
reference measurements.

VI. CONCLUSION

The determination of elastic material constants and the
simultaneous determination of wave speed and thickness are
well-studied problems. The benefit of this work becomes
apparent in providing a one-sided technique of simultaneously
estimating material constants and thickness of plates. This
method is based on optical measurements of Lamb waves and
determining the parameters with an IM based on fast modeling
of the dispersive Lamb wave modes.

The described numerical model of elastic waves in plates
based on spectral collocation can easily be implemented and
calculates the dispersive Lamb wave modes efficiently. The
shown measurement system containing a laser vibrometer
produces clear information on the Lamb wave modes. After
processing the data, frequency-dependent wavenumbers could
be retained. On the basis of this, an easy-to-implement, stable,
and fast IM algorithm estimates the desired plate properties.
We presented results for four samples of different thicknesses
and materials. The estimated parameters agree very well with
reference measurements. It could be observed that the quality
of the parameter estimation increases with thicker plates since
more Lamb modes occur. The same effect can be reached by
using higher frequencies.
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Further investigations on the noncontact characterization
of anisotropic materials as well as third-order elastic con-
stants could be contemplated for future work. Moreover,
the exchange of the Lamb wave excitation technique toward
a laser-based noncontact excitation, as presented by other
authors, results in a noncontact measurement device, which
may be worth considering in industrial usage for product
monitoring.
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[20] L. Gavrić, “Computation of propagative waves in free rail using a finite
element technique,” J. Sound Vib., vol. 185, no. 3, pp. 531–543, 1995.

[21] A. T. I. Adamou and R. V. Craster, “Spectral methods for modelling
guided waves in elastic media,” J. Acoust. Soc. Amer., vol. 116, no. 3,
pp. 1524–1535, 2004.

[22] F. H. Quintanilla, M. J. S. Lowe, and R. V. Craster, “Modeling guided
elastic waves in generally anisotropic media using a spectral collocation
method,” J. Acoust. Soc. Amer., vol. 137, no. 3, pp. 1180–1194, 2015.

[23] M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and
Actuators: Finite Elements for Computational Multiphysics, 3rd ed.
New York, NY, USA: Springer, 2015.

[24] J. A. Weideman and S. C. Reddy, “A MATLAB differentiation matrix
suite,” ACM Trans. Math. Softw., vol. 26, no. 4, pp. 465–519, 2000.

[25] D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method
for the measurement of propagating multimode signals,” J. Acoust. Soc.
Amer., vol. 89, no. 3, pp. 1159–1168, May 1990.

[26] J. B. Harley and J. M. F. Moura, “Sparse recovery of the multimodal
and dispersive characteristics of Lamb waves,” J. Acoust. Soc. Amer.,
vol. 133, no. 5, pp. 2732–2745, 2013.

[27] F. Schöpfer et al., “Accurate determination of dispersion curves of
guided waves in plates by applying the matrix pencil method to laser
vibrometer measurement data,” CEAS Aeronaut. J., vol. 4, no. 1,
pp. 61–68, 2013.

[28] S. J. Rupitsch, Piezoelectric Sensors and Actuators: Fundamentals and
Applications (Topics in Mining, Metallurgy and Materials Engineering).
Berlin, Germany: Springer, 2019.

[29] J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland
Series in Applied Mathematics and Mechanics), 2nd ed. Amsterdam,
The Netherlands: Elsevier, 1976.

[30] S. J. Rupitsch and J. Ilg, “Complete characterization of piezoceramic
materials by means of two block-shaped test samples,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 62, no. 7, pp. 1403–1413,
Jul. 2015.

Michael Ponschab was born in Ingolstadt,
Germany, in 1991. He received the M.Sc. degree
in electrical engineering from Friedrich–Alexander
Universität Erlangen–Nürnberg, Erlangen, Germany,
in 2016, where he is currently pursuing the Ph.D.
degree with the Department of Sensor Technology.

His research interests include ultrasonic sensing,
elastodynamic guided waves, signal processing, and
simulation-based material characterization.

Daniel A. Kiefer was born in Tumbaco-Quito,
Ecuador, in 1989. He received the M.Sc. degree in
mechatronics from Friedrich–Alexander Universität
Erlangen–Nürnberg, Erlangen, Germany, in 2016,
where he is currently pursuing the Ph.D. degree in
ultrasonic sensing with the Department of Sensor
Technology.

His research interests include guided elasto-
dynamic waves, fluid–structure interaction and
the corresponding numerical methods, and signal
processing.

Stefan J. Rupitsch (S’07–M’09) was born in
Kitzbuehel, Austria, in 1978. He received the
Diploma and Ph.D. degrees in mechatronics
from Johannes Kepler University, Linz, Austria,
in 2004 and 2008, respectively, and the Habilita-
tion degree from Friedrich–Alexander Universität
Erlangen–Nürnberg, Erlangen, Germany, in 2018.

In 2004, he was a Junior Researcher with the Linz
Center of Mechatronics, Linz. From 2005 to 2008,
he was with the Institute for Measurement Tech-
nology, Johannes Kepler University. He is currently

the Deputy Head of the Chair of Sensor Technology, Friedrich–Alexander
Universität Erlangen–Nürnberg. His research interests include piezoelectric
transducers and materials, simulation-based material characterization, ultra-
sonic imaging, and noncontacting measurements.

Dr. Rupitsch was a recipient of the Austrian Society of Measurement and
Automation Technology Award for his Ph.D. dissertation in 2009 and the
Outstanding Paper Award of the Information Technology Society in 2016. He
is an Associate Editor of the IEEE SENSORS JOURNAL.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on April 06,2020 at 09:45:45 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


