
Calculating the full leaky Lamb wave spectrum with exact fluid
interaction

Daniel A. Kiefer,a) Michael Ponschab, and Stefan J. Rupitsch
Friedrich-Alexander-University Erlangen-N€urnberg (FAU), Sensor Technology, 91052 Erlangen, Germany

Michael Mayle
Diehl Metering GmbH, 91522 Ansbach, Germany

(Received 13 December 2018; revised 3 May 2019; accepted 8 May 2019; published online 7 June
2019)

Lamb waves are elastodynamic guided waves in plates and are used for non-destructive evaluation,
sensors, and material characterization. These applications rely on the knowledge of the dispersion
characteristics, i.e., the frequency-dependent wavenumbers. The interaction of a plate with an adjacent
fluid leads to a nonlinear differential eigenvalue problem with a square root term describing exchange
of energy with the surrounding medium, e.g., via acoustic radiation. In this contribution, a spectral
collocation scheme is applied to discretize the differential eigenvalue problem. A change of variable
is performed to obtain an equivalent polynomial eigenvalue problem of fourth order, which is linear
in state-space and can reliably be solved using modern numerical methods. Traditionally, the leaky
Lamb wave problem has been solved by finding the roots of the characteristic equations, a numerically
ill-conditioned problem. In contrast to root-finding, the approach described in this paper is inherently
able to find all modes and naturally handles complex wavenumbers. The full phase velocity dispersion
diagram and attenuation curves are presented and are shown to be in excellent agreement with
solutions of the characteristic equation as well as computations made with a perturbation method.
The procedure is applicable to anisotropic, viscoelastic, inhomogeneous, and layered plates
coupled to an inviscid fluid. VC 2019 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/1.5109399
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I. INTRODUCTION

Lamb waves are guided modes confined inside a plate.
Understanding their propagation characteristics is important
for diverse applications. In the field of non-destructive evalu-
ation, they can be used to achieve long-range inspection of
plate-like structures and pipes.1 Sensors and actuators based
on Lamb wave propagation include flow meters, liquid
viscosity sensors, acoustic touch screens, and microfluidic
pumping.2,3 Similar guided modes in layered media have
also been studied extensively in seismology.4

In practice, the plate serving as a waveguide is often in
contact with a fluid, either on one or both sides. The mutual
interaction between the guided wave in the plate and the
pressure wave in the fluid will, henceforth, be referred to as
fluid loading of the plate. While the energy of waves propa-
gating in a free plate is strictly confined within the structure,
fluid loading will usually lead to leakage of energy into the
surrounding medium by means of acoustic radiation. Such
waves are called leaky Lamb waves.5–8 Like most guided
waves, they are dispersive, meaning that their wavenumber
depends on frequency.9,10 Knowledge of the dispersion

characteristics is essential for the design of ultrasonic devi-
ces for the mentioned applications. In particular, both phase
velocity and attenuation due to energy leakage are important
parameters.1

The wavenumber-frequency relationship, given implic-
itly by the characteristic equation of the guided wave prob-
lem,10,12 is transcendental and cannot be solved analytically.
Traditionally, numerical root-finding has been performed to
obtain dispersion diagrams.13 This, however, is a numeri-
cally ill-conditioned problem.14 Modern techniques to obtain
dispersion characteristics are based on discretization of the
guided wave boundary value problem and subsequent solu-
tion of the resulting algebraic eigenvalue problem. This
discretization-based methodology has significant numerical
advantages: it is robust, guarantees to find all eigenvalues,
and naturally handles complex wavenumbers.15 Different
discretization methods have been used for this kind of solu-
tion procedure. Spectral collocation with Chebyshev polyno-
mials was used by Adamou and Craster15 and later by
Hernando Quintanilla et al.16,17 Pioneering work was done
by Lefebvre et al.18,19 using Legendre and Laguerre spectral
collocation. Pagneux and Maurel20 presented a spectral
numerical method with explicit separation into symmetric
and antisymmetric mode families. Finite difference schemes
have also been used for this purpose.21 Waveguides witha)Electronic mail: daniel.kiefer@fau.de
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arbitrary cross-section are often discretized using finite
elements.22,23

The above described efforts mostly focus on the solution
of the free waveguide problem. A waveguide adjacent to an
infinite medium represents an open-domain problem and is,
hence, considerably more difficult to handle. Commonly,
fluid loading of Lamb waves has been studied by either
perturbation methods10 or by finding the roots of the corre-
sponding characteristic equation.6,24,25 Perturbation based on
reciprocity relations provides a simple way to obtain approx-
imative attenuation values due to fluid loading given the free
plate modes. The results are only valid for fluids with low
mass density and the method is not able to find any addi-
tional modes arising in the fluid loaded case. The second
approach, root-finding of the characteristic equations, is
potentially able to find the complex wavenumbers of all
leaky modes.12,13 However, the numerical challenges men-
tioned for the free plate still apply and are even more severe
because most wavenumbers are truly complex. Root-finding
of the leaky wave problem is a cumbersome method, which
might miss important parts of the dispersion diagram.

In order to avoid these complications, efforts have been
made to compute dispersion characteristics of leaky guided
waves by solution of the corresponding eigenvalue problem.
The main difficulty herein is that fluid loading leads to a
nonlinear eigenvalue problem.23,26 Numerical algorithms for
general nonlinear eigenvalue problems are the subject of
current research27–29 and several different solvers have been
proposed.30–36 Polynomial eigenvalue problems represent a
special case, as they can be reduced to a generalized linear
eigenvalue problem in a higher dimensional state-space.
They are, therefore, easier to solve because conventional,
highly sophisticated numerical solvers for linear eigenvalue
problems might be used.

Hayashi and Inoue22 solved the fluid loaded plate prob-
lem by discretizing the waveguide with finite elements and
assuming plane harmonic waves in the surrounding medium.
They further use a priori knowledge on the propagation
symmetry of leaky Lamb waves to reduce the nonlinear
eigenvalue problem to a generalized eigenvalue problem in
terms of the transversal wavenumber. This method should be
capable of finding all solutions but does not resolve the
ambiguity in the quadratic relationship of the wavenumber
components. Mazzotti et al.23,37 calculated the dispersion
characteristics of leaky waveguides of arbitrary cross-
section. They combine a finite element discretization of the
waveguide with a boundary element discretization of the
fluid domain. Subsequently, they solve the resulting nonlin-
ear eigenvalue problem by a contour integral method, which
requires a priori knowledge about the regions in the complex
plane where solutions may lie. The assumptions made
hereon will not be correct when the guided mode’s wave-
number is close to the fluid bulk wavenumber and may lead
to inaccurate and incomplete results in this region.

The nonlinear eigenvalue problem can be avoided by
additionally discretizing the infinite surrounding medium.
Hernando Quintanilla38 implemented a perfectly matched
layer to obtain a generalized eigenproblem formulation.
However, the unnecessary discretization of the fluid domain

leads to spurious eigenvalues, which have to be discarded
appropriately. Additionally, a bad design of the perfectly
matched layer potentially leads to detrimental effects.
Another tempting approach would be to combine a
Chebyshev spectral collocation of the plate with a Laguerre
spectral collocation of the fluid half-space. Nevertheless, this
does not work because the radiated acoustic field is known
not to be square integrable and can, thus, not be represented
by Laguerre polynomials.19

In this contribution, we apply a Chebyshev spectral
collocation to discretize the waveguide problem with spec-
tral accuracy. Fluid loading is then incorporated by assuming
inhomogeneous plane wave radiation into the medium. The
resulting nonlinear eigenvalue problem is transformed to an
equivalent polynomial eigenvalue problem of fourth order
by an appropriate change of variable. Hence, a formulation
is obtained which can be solved robustly by conventional
numerical methods. The resulting computational method is
easily implemented and able to reliably calculate the full dis-
persion characteristics of the leaky Lamb wave problem with
analytically exact fluid interaction.

II. PROBLEM FORMULATION

In the following, let us consider a homogeneous, isotro-
pic, linear-elastic plate of infinite extend. An excerpt of the
cross-sectional geometry of the problem is shown in Fig. 1.
The coordinate system is chosen such that the wave propaga-
tion takes place in x-direction and the y axis is normal to the
plate’s plane. In this case, the wave motions with displace-
ments in z-direction decouple from those with displacements
in the x–y-plane.39 Solely the latter are capable of interacting
with the surrounding ideal fluid and are referred to as Lamb
waves. Hereafter, only this kind of wave propagation shall
be considered.

The displacements ~u in the x–y-plane may be repre-
sented by a Helmholtz displacement decomposition3,9 as

~u ¼
ux

uy

0

2

64

3

75 ¼ rupðx; y; tÞ þr%
0

0

Wzðx; y; tÞ

2

64

3

75; (1)

inside the plate and as

~uf ¼
ufx

ufy

0

2

64

3

75 ¼ rufðx; y; tÞ; (2)

FIG. 1. Cross-sectional excerpt of the plate with thickness h and infinite
extend in the x–z-plane. The plate interacts with an adjacent fluid.
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in the fluid domain. Herein, up and uf represent longitudinal
wave displacement potentials and Wz designates the z-com-
ponent of the transverse wave potential, respectively. We
consider harmonic wave propagation in both time t and in
the coordinate x. This leads to

upðx; y; tÞ :¼ uðyÞ eiðkxx&xtÞ; (3a)

Wzðx; y; tÞ :¼ iWðyÞ eiðkxx&xtÞ; and (3b)

ufðx; y; tÞ :¼ ufðyÞ eiðkxx&xtÞ (3c)

as separated-variable ansatz for the potentials. Herein, kx is
the guided mode wavenumber and x¼ 2pf is the angular fre-
quency corresponding to the frequency f. u(y) and W(y) des-
ignate the unknown y-dependent part of the plate potentials.
Being time-independent, they represent a through-thickness
standing wave in the plate. The potentials in the plate and
the fluid share the same harmonic factor eiðkxx&xtÞ in order to
satisfy the generalized Snell’s law,40 that is, kx;fluid ¼ kx;lamb

¼: kx. Since this factor appears in all equations, it is omitted
from now on. The factor i ¼

ffiffiffiffiffiffiffi
&1
p

in the transversal wave
potential is chosen for practical reasons, as the problem then
results in a purely real formulation.

Furthermore, the fluid motion is assumed to be an inho-
mogeneous plane harmonic bulk wave40 with unknown com-
plex amplitude A and complex wave vector ~kf ¼ ½kx; ky(T . In
contrast to guided waves in the plate, which propagate in the
x-direction, this wave vector has a non-vanishing component
normal to the plate that is called the transversal wavenumber
ky. The magnitude kf :¼ j~kf j ¼ x=cf for an inviscid fluid is
real valued and fully determined by the fluid’s longitudinal
wave speed cf and the angular frequency x. Moreover, the
components of the wave vector must satisfy the trigonomet-
ric relation

k2
f ¼ k2

x þ k2
y : (4)

With these assumptions and considering that the plate-fluid
interface is at y0¼ h/2, where h is the plate’s thickness, the
fluid potential is then known to be of the form40

ufðyÞ :¼ Aeikyðy&h=2Þ: (5)

With the above ansatz for the potentials, namely, Eqs.
(3a), (3b), and (5), the unknowns are u(y), W(y), and A. For
the sake of conciseness, we omit the y-dependence of the
field variables from now on in the notation unless necessary.
The differential equations of unforced motion11 of the plate
may then be formulated in dependence of the unknowns as

&k2
xuþ

@2u
@y2
þ x2

c2
l

u ¼ 0; (6a)

&k2
xWþ

@2W
@y2
þ x2

c2
t

W ¼ 0; (6b)

where the longitudinal wave speed cl and the transversal
wave speed ct of the plate’s material have been used.

Boundary and interface conditions are needed in addi-
tion to the equation of motion [Eq. (6)]. For single-sided
fluid loading of the plate, the top boundary in Fig. 1 is
traction free,10 requiring the normal stress ryy and shear
stress rxy to vanish at y¼&h/2. In terms of the unknowns,
the conditions are (see Appendix)

&k2
x

k
l

uþ 2kx
@W
@y
þ kþ 2lð Þ

l
@2u
@y2

" #

y¼&h=2

¼ 0; (7a)

k2
xWþ 2kx

@u
@y
þ @

2W
@y2

" #

y¼&h=2

¼ 0; (7b)

respectively. Here, k and l denote the Lam"e parameters of
the plate’s material. The linear displacement-strain relation11

and the linear-elastic constitutive relations11 have been used
assuming a plain strain state,41 i.e., ezy¼ ezx¼ ezz¼ 0.
Additionally, for numerical reasons and conciseness, the
above expressions have been normalized to l and il/2,
respectively.

The interface conditions at the boundary y¼ h/2
between the plate and the inviscid fluid are given by the bal-
ance of tractions and the continuity of normal displace-
ments.24 The first condition is ensured by the continuity
of normal stress in the plate ryy and the fluid rfyy, given by
ryy & rfyy¼ 0, and vanishing of shear stresses, i.e., rxy¼ 0.
The second is guaranteed by demanding that uy & ufy¼ 0.
Normalizing the two stress requirements as before and the
displacement condition with h, these conditions result in (see
Appendix)

&k2
x

k
l

uþ 2kx
@W
@y
þ kþ 2lð Þ

l
@2u
@y2
þ qfx

2

l
A

" #

y¼h=2

¼ 0;

(8a)

k2
xWþ 2kx

@u
@y
þ @

2W
@y2

" #

y¼h=2

¼ 0; (8b)

1

h
kxWþ

@u
@y
& ikyA

" #

y¼h=2

¼ 0; (8c)

where rfyy ¼ &qfx
2uf has been used because the fluid is in

a hydrostatic stress state.9

The equations of motion [Eq. (6)] together with the
boundary conditions [Eq. (7)] and interface conditions [Eq.
(8)] are further referred to as the leaky Lamb problem for sin-
gle sided fluid interaction. In comparison with the free plate
problem, it has merely been increased by the scalar degree of
freedom A and one additional equation given by Eq. (8c). In
contrast to other work,22,26 we do not reduce this additional
degree of freedom. It should be noted that due to the
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assumption of inhomogeneous plane wave propagation in the
fluid, the acoustic field is fully determined by the values at
the interface y¼ h/2. In this way, the computational domain
has been reduced to a simple one-dimensional closed geome-
try, namely, the interval y 2 [&h/2, h/2]. This means that no
discretization of the fluid domain is required in order to solve
the equations. As a consequence, spurious modes due to dis-
cretization of the open domain y 2 [h/2,1] are avoided.38

The leaky Lamb problem for the immersed plate, i.e.,
loaded with the same fluid on both sides, can be obtained in
a similar way by introducing an additional scalar degree of
freedom representing the potential amplitude in the second
fluid half-space and prescribing interface conditions similar
to Eq. (8) at y¼&h/2 instead of the free boundary
conditions.

For a specific angular frequency x, one may regard the
problem as a differential eigenvalue problem,20 where the
eigenvalues kx and eigenfunctions q(y)¼ [u(y), W(y), A]T

need to be found. In the interface condition [Eq. (8c)], the
transversal wavenumber ky still appears explicitly. Using Eq.
(4), it could be rewritten in terms of kx as

ky ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f & k2
x

q
: (9)

Due to this square root dependence, the differential eigen-
value problem is nonlinear.29 We remark that due to the
ambiguity of the sign in Eq. (9), technically two problems
need to be solved in order to find all solutions. As will be
seen in Sec. IV, the proposed change of variable that is per-
formed after discretization resolves this ambiguity.

III. DISCRETIZATION

The leaky Lamb problem is continuous in the coordinate
y. In order to solve these equations on a computer, a discrete
approximation to the continuous functions of this coordinate
as well as their derivatives needs to be found. Independent
of the choice of discretization technique, the structure of the
resulting discrete eigenvalue problem is similar because it is
induced by the continuous formulation. The problem has
been formulated on a simple one-dimensional and closed
domain. Such problems are often conveniently discretized
by spectral collocation.42,43 Chebyshev spectral collocation
will be used in the present contribution, in accordance with
the work on free guided waves by Adamou and Craster15

and Hernando Quintanilla et al.16 In the following, we
shortly review the features and advantages of this method
based on the monographs by Trefethen42 and Fornberg.43

Spectral collocation is a special form of the weighted
residuals method. The basic idea is to expand the solution as
a sum of N weighted and known continuous trial functions.
Then, an approximate solution to the continuous problem is
found by determining the weights of the expansion terms
that yield the minimal residuum. A collocation method43

determines these weights by requiring the residual of the
approximation to vanish at a selected set of N points, which
are the so called collocation points yi. In contrast to many
other methods, it is implemented in physical space. The term

spectral refers to the fact that smooth global functions are
used as test functions,43 i.e., they extend over the whole
domain of the problem.

Different test functions can be used to expand the
approximate solution. On finite domains, Chebyshev polyno-
mials show optimal behavior for N ! 1.43 In order to
achieve the best performance and avoid the Gibbs phenome-
non, the collocation points must be clustered quadratically at
the domain borders.42 Chebyshev-Gauß-Lobatto points43

fulfill this requirement and are used together with Chebyshev
polynomial test functions.

In contrast to finite elements, which exhibit polynomial
convergence with increased discretization order N, spectral
methods provide exponential convergence rates for sufficiently
smooth solutions.42,43 This property is called spectral conver-
gence or spectral accuracy. For problems with non-smooth
solutions, spectral methods usually still converge polyno-
mially. Spectral convergence is the main reason why these
methods are considered superior to other discretization meth-
ods on simple domains.14,42,43 These features are obtained at
cost of dense matrices for the discretized problem. However,
the rapid convergence of the method usually compensates for
this disadvantage as it leads to small matrices.

Differentiation with spectral methods can be represented
explicitly by differentiation matrices.42,47 To illustrate this,
consider any arbitrary function g(y). If the function values
g(yi) at the collocation points yi are collected in the vector g,
then the vector g0 of corresponding derivative values
@gðyÞ=@yjyi

can be computed with the differentiation matrix
D

y
as g0 ¼ D

y
g. This provides a straightforward approach to

assemble the discretized form of the leaky Lamb problem.
We shortly describe the procedure as presented in referen-
ces.15,16,47 As a first step, the unknowns in Eqs. (6), (7) and
(8) are collected in q(y)¼ [u(y), W(y), A]T and all equations
are rewritten in matrix form depending only on q(y). In a
second step, the following formal mappings are performed:

• unknowns: qðyÞ ¼
uðyÞ
WðyÞ

A

2

4

3

5 7!q ¼
u
W
A

2

4

3

5,

• all constant elements n in the equations: n 7! nI ,

• diff. operators: @=@yð Þ7! 1=hð ÞDn
y ; @2=@y2
$ %

7! 1=h2
$ %

Dn
yy,

where I denotes the N%N identity matrix, whereas Dn
y and

Dn
yy refer to the N%N differentiation matrices of first and sec-

ond order on the normalized domain y 2 [&1/2, 1/2], respec-
tively. For the boundary and interface conditions, only local
equations are needed. For this purpose, Dn

y jyi
; Dn

yyjyi
, and Ijyi

shall represent the rows of the corresponding matrices describ-
ing the maps for y¼ yi. Performing the two steps as explained
above and multiplying all equations by h2 yields the corre-
sponding discretized and normalized form of the leaky Lamb
problem.

Denoting with “0” the zero matrix with
appropriate dimension, the equation of motion [Eq. (6)]
results in a system of 2Nþ 1 equations and 2Nþ 1 variables
given by
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k2
x h2

&I 0 0

0 &I 0

0 0 0

2

64

3

75þ

Dn
yy þ

xh

cl

& '2

I 0 0

0 Dn
yy þ

xh

ct

& '2

I 0

0 0 0

2

6666664

3

7777775

0

BBBBBB@

1

CCCCCCA

u

W

A

2

64

3

75 ¼
0

0

0

2

64

3

75: (10)

The boundary conditions [Eq. (7)] give a 2% 2Nþ 1 system for y¼&h/2, namely,

k2
x h2

& k
l

I 0 0

0 I 0

2

64

3

75þ kxh
0 2Dn

y 0

2Dn
y 0 0

2

4

3

5þ
kþ 2l

l
Dn

yy 0 0

0 Dn
yy 0

2

664

3

775

0

BB@

1

CCA

(((((
&h=2

u

W

A

2

6664

3

7775 ¼
0

0

2

4

3

5: (11)

The discrete form of the interface conditions [Eq. (8)] yields a 3% 2Nþ 1 system for y¼ h/2, written as

k2
x h2

& k
l

I 0 0

0 I 0

0 0 0

2

66664

3

77775
þ kxh

0 2Dn
y 0

2Dn
y 0 0

0 I 0

2

664

3

775þ

kþ 2l
l

Dn
yy 0

qf xhð Þ2

l
I

0 Dn
yy 0

Dn
y 0 0

2

666664

3

777775

0

BBBBB@
þikyh

0 0 0

0 0 0

0 0 &1

2

664

3

775

1

CCCCA

(((((
h=2

u

W

A

2

664

3

775¼

0

0

0

2

664

3

775:

(12)

Lastly, we incorporate the boundary conditions (BCs)
and interface conditions (ICs) into the equations of motion
to obtain one system of equations.47 In the equations of
motion [Eq. (10)], the rows 1 and Nþ 1 represent equations
at the top boundary point y¼&h/2, while rows N, 2N and
2Nþ 1 correspond to the point at y¼ h/2. These rows are
replaced with the boundary conditions [Eq. (11)] and inter-
face conditions [Eq. (12)], respectively. Therefore, for each
dependence on the wavenumbers kx and ky, a matrix is
assembled with structure as shown in Fig. 2.

Naming the resulting matrices A
2
; A

1
; A

0
, and B and

introducing the matrix function

FðkxÞ ¼ k2
x A

2
þ kxA

1
þ A

0
þ ikyB; (13)

the above scheme yields

FðkxÞq ¼ 0: (14)

In this way, a single system of algebraic equations is
obtained that fully describes the leaky Lamb wave prob-
lem. Equation (14) is interpreted as an algebraic nonlinear
eigenvalue problem;27,29 remember that ky is a function
of kx.

IV. CHANGE OF VARIABLE

Several approaches exist to solve nonlinear eigenvalue
problems, which are often based on approximation by itera-
tive linearization.5,26,36 This is not necessary for polynomial
and rational eigenvalue problems because they are lineariz-
able, meaning that an equivalent linear eigenvalue problem
in a higher-dimensional state space can be found.29 The gun
problem models a radio-frequency gun cavity and consist of
an eigenvalue problem with two square root terms. As shown
by Hood,44 it can be transformed to a polynomial eigenvalue
problem by performing a trigonometric change of variable.
As we demonstrate below, the leaky Lamb problem [Eq.
(14)] can also be reduced to polynomial form by a similar
change of variable.

FIG. 2. (Color online) Structure of the assembled matrices: the boundary
conditions [Eq. (11)] and interface conditions [Eq. (12)] are incorporated
into the equations of motion [Eq. (10)].
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For this purpose, the variable c 2 Cnf0g is defined such
that

kx ¼ kf
cþ c&1

2
(15)

holds. From Eq. (9), the corresponding transversal wave-
number is

ky ¼ 6kf
c& c&1

2i
: (16)

We now insert the change of variable Eqs. (15) and (16) into
the matrix function [Eq. (13)] and multiply by 4c2.
Depending on the choice of sign, this leads to two different
polynomial matrix functions, given by

P
6
ðcÞ :¼ 4c2FðkxÞ (17)

¼ k2
f A

2

zffl}|ffl{
P

4

c4 þ 2kfðA1
6B

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
Þ

P
3

c3 þ ð4A
0
þ2k2

f A
2

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
Þ

P
2

c2

þ 2kfðA
1
7BÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
P

1

cþ k2
f A

2|ffl{zffl}
P

0

: (18)

It is noted that the matrix polynomials P
6
ðcÞ will be singular

for cn if and only if the corresponding kxn given by Eq. (15)
is an eigenvalue of FðkxÞ or cn¼ 0. Hence, the spectrum of
FðkxÞ is fully determined by the eigenvalues of P

6
ðcÞ.

However, additional eigenvalues cn¼ 0 are introduced by
P

6
ðcÞ, which yield wavenumbers kxn !1. These are of no

further interest and are easily discarded.
It is pointed out that the choice of sign in Eq. (16) and

consequently Eq. (18) is irrelevant. By inspecting the coeffi-
cient matrices in Eq. (18), we find that PþðcÞ ¼ c4P&ðc

&1Þ.
Therefore, the spectrum of P& equals the inverted spectrum
of Pþ, i.e., if cn is an eigenvalue of Pþ, then c&1

n will be an
eigenvalue of P&. Nevertheless, these two solutions yield
the same wavenumber kxn when substituted back into Eq.
(15). They will also map to the exact same transversal wave-
number kyn when taking into account the sign chosen in Eq.
(16). As a result, the two polynomial eigenvalue problems
are equivalent and each of them fully and uniquely describes
the spectrum of leaky Lamb modes. This feature is due to
the fact that the change of variable is not an injective map
and the values cn and c&1

n actually represent the choice of
sign in Eq. (16).

We conclude that in order to obtain the full leaky Lamb
spectrum, it is possible to choose without loss of generality
P ¼ Pþ and then solve the polynomial eigenvalue problem

PðcÞq ¼ 0; (19)

obtaining the eigenvalues cn and eigenvectors q
n
.

Subsequently, the sought wavenumbers kxn are computed
using Eq. (15), while the eigenvectors remain unchanged.
Similarly, the corresponding transversal wavenumber kyn

may be determined uniquely with Eq. (16) by choosing the
sign corresponding to the choice of Eq. (19). This

uniqueness is in fact an additional major advantage of the
proposed method and is crucial for the solution procedure.

To solve the polynomial eigenvalue problem [Eq. (19)],
a companion linearization27,45,46 is usually performed, which
is not an approximation but rather an equivalent representa-
tion in a higher dimensional state space. Such linearization
may be obtained by introducing the state variables

Q ¼

c3q

c2q

c1q

q

2

666664

3

777775
; (20)

as well as the companion matrices

A0 ¼

&P
3
&P

2
&P

1
&P

0

I 0 0 0

0 I 0 0

0 0 I 0

2

66664

3

77775
; (21)

B0 ¼

P
4

0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

2

66664

3

77775
: (22)

In doing so, Eq. (19) is equivalent to

ðA0 & cB0ÞQ ¼ 0; (23)

which is a generalized linear eigenvalue problem. It is noted
that this linearization procedure is not unique, i.e., other
equivalent linear forms can be constructed.27,45 After lineari-
zation, conventional eigenvalue solvers can be employed to
obtain the desired solutions, harnessing all advantages these
methods provide. In contrast to root-finding methods, the
presented eigenvalue solution approach reliably finds all
wavenumbers of the leaky Lamb problem and additionally
provides the associated eigenvectors free of extra cost.
Moreover, the above formulation inherently handles com-
plex wavenumbers without extra effort.

V. CALCULATION RESULTS

The matrix A
0

in Eq. (18) depends on the frequency f.
Solving this problem for different frequencies and substituting
the obtained eigenvalues c back into Eq. (15) results in the
complex wavenumber spectrum kx(f). The differentiation
matrices are computed with a routine provided by Weideman
and Reddy.47 We use the MATLAB polyeig-function to compute
the eigenvalues, which is based on companion linearization in
combination with the QZ-algorithm. A discretization order of
N¼ 10 yields converged results. Computing the solutions for
150 frequency values requires approximately one second on a
regular personal computer with an Intel Core i5 processor and
8 GB of main memory.
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The computations have been performed for a brass plate
(q¼ 8440 kg/m3, k¼ 87 GPa, l¼ 41 GPa) in contact on one
side with water (qf¼ 1000 kg/m3, cf¼ 1480 m/s). All results
are shown for a 1 mm thick plate. We note, however, that
similar to Lamb waves in a free plate, the wavenumber-
thickness product kxh depends only on the frequency-
thickness product fh and not explicitly on the thickness h.
The resulting wavenumbers kx are shown in Fig. 3(a), where
Re{•} and Im{•} refer to the real and imaginary parts of •,
respectively. Accordingly, the transversal wavenumber ky in
the fluid domain has been calculated by Eq. (16) and is plot-
ted in Fig. 3(b). The dispersion diagrams are actually curves
in the three-dimensional space given by [Re{•}% Im{•}
% f].10,17 The two graphs in Fig. 3 are projections onto the
complex plane ½Ref•g% Imf•g(. A perspective view in
three-dimensional space of the dispersion curves of kx and ky

is depicted in Figs. 4(a) and 4(b), respectively. Additionally,
the spectrum of the free plate is displayed as reference in
Fig. 4(a).

The wavenumber spectrum kx(f) exhibits the expected
Hamiltonian symmetry, i.e., if kx0 is an eigenvalue, then
f&kx0; k)x0;&k)x0g will also be eigenvalues, where •* denotes
the complex conjugate. The axes extends of the plots are
chosen such that only the spectra of propagating modes, hav-
ing jIm kxj < 0:1 Np=mm, are shown. In this region, the free
plate spectrum is purely real, as these modes are unable to
leak energy into the surroundings and, hence, do not experi-
ence attenuation. It is important to note that fluid loading

leads to additional modes not present in the free plate, a fact
that is ignored by perturbation methods. The present method
correctly finds these additional modes. One of them is the
well known quasi-Scholte (QS) mode,48 which is sometimes
also called the Stoneley-Scholte plate wave or A-mode.49

In the following, we solely consider the open half plane
kxþ 2 fkxjRe kx > 0g, which represents guided waves travel-
ing in positive x-direction. Of these modes, the ones with
Im kx> 0 radiate a plane wave into the infinite fluid domain,
being attenuated thereby. These are further referred to as
leaky modes. The reciprocal process, an inhomogeneous
plane wave incident on the plate whereby a guided mode is
excited, is described by the complex conjugate wavenumbers
seen in the quadrant with Im kx< 0. On the real half-axis,
having Im kx¼ 0, modes propagating without attenuation are
found. The other half-plane with Re kx< 0 is symmetric to
the first one because the analogous modes propagate in
opposite direction.

The phase velocity is calculated as

cp fð Þ ¼
2pf

Re kx fð Þ
; (24)

and is shown in Fig. 5(a). The color of the points reflects the
corresponding attenuation Imkx, which is additionally

FIG. 3. (Color online) Frequency-dependent wavenumber spectra in the
complex plane for a 1 mm thick brass plate in contact on one side with water:
(a) wavenumber kx; (b) transversal wavenumber ky in the fluid domain.

FIG. 4. (Color online) Perspective view in three-dimensional space
[Re{•}% Im{•}% f] of Fig. 3: (a) wavenumber of fluid-coupled plate kx and
of free plate; (b) transversal wavenumber ky in the fluid domain.
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provided explicitly in Fig. 5(b). For the present case of a
plate with high mass density q compared to the fluid, the
phase velocity dispersion diagram is similar to the one corre-
sponding to waves in a free plate. For this reason, the leaky
Lamb modes are termed Ai0 or Si0 whenever a correspon-
dence to anti-symmetric or symmetric Lamb waves in a free
plate of order i can be established. It should be pointed out,
however, that the mode structure ux(y) and uy(y) of the
single-sided leaky Lamb problem does not strictly exhibit
any kind of symmetry because the problem domain itself is
not symmetric along the y-coordinate.39 While the phase
velocity in the present case is similar to the free plate, atten-
uation is solely a consequence of fluid loading—the latter
often being an important parameter for system design.

The low frequency region of the phase velocity disper-
sion curves is enlarged in Fig. 6 for better clarity. The fre-
quency where the phase velocity of the A0-mode in the free
plate coincides with the fluid wave speed cf is called the
coincident frequency. In the present case it is at 0.49 MHz. It
is often assumed a priori that no radiation will occur below
this frequency.23,26 However, as the attenuation diagram in
Fig. 5(b) indicates, energy leakage may take place below the
coincident frequency, a fact that has been noted before.50

Moreover, we observe splitting of the A00-mode into two
branches with real wavenumbers near 0.33 MHz, named D0
and D1 here. This splitting of the A00-mode has been

analyzed by Dabirikhah and Turner50 and was also observed
by Bao et al.51 as well as Freedman.52

In order to validate the presented calculation method, it
is checked against solutions obtained by two different and
independent models. The first one is root-finding of the char-
acteristic equation, which should yield the same results as
the presented model. The equation is provided, e.g., in
€Uberall et al.49 as well as Grab"owska.24 It is difficult to reli-
ably find all solutions of these transcendental equations and
initial values are needed for the iterative solution procedure.
For this purpose, random values between &1% and þ1% of
kx are added to the wavenumbers calculated with the pre-
sented spectral collocation method. These perturbed wave-
numbers are then used as initial values for the Newton
iteration applied to find the closest root. The solutions all
converge back to the original values of kx, as can be seen in
the phase velocity plot in Fig. 6. The relative difference
between phase velocities calculated by the two methods is
always less than 4% 10&5. Furthermore, the colored back-
ground of the diagram represents the local magnitude of the
characteristic equation for real wavenumbers. The light
regions are close to zero and roots are expected to lie there,
which is the case for the obtained solutions.

The second check is performed against a totally differ-
ent model, namely, perturbation of the free plate solutions.
According to Auld,10 approximative attenuation values
a * Imkx can be computed given the phase velocity cp0 as
well as the displacement structure uy0(y) of the free plate
modes as

a ¼
x2qfcf juy0 &h=2ð Þj2

4P0 cos sin&1 cf=cp0

$ %* + ; (25)

where P0 denotes the power flux inside the plate. These com-
putations were performed for the same plate as before and
the results are shown in Fig. 5(b). The obtained attenuation
values largely coincide with those computed from the leaky
Lamb eigenvalue problem. As expected, the coincidence

FIG. 5. (Color online) Dispersion diagrams for a 1 mm thick brass plate in
contact on one side with water: (a) phase velocity cp with color proportional
to the attenuation Imkx due to radiation losses, which is plotted explicitly in
(b) together with approximate solutions obtained from a perturbation model
according to Eq. (25).

FIG. 6. (Color online) Splitting of the A00-mode: comparison between solu-
tions from spectral collocation and the roots of the characteristic equation
for a 1 mm thick brass plate in contact on one side with water. The colored
background illustrates the magnitude of the characteristic equation, tending
to zero for white color.
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region cannot be represented by the perturbation method,
nor the high-frequency range of the A00 and S00 modes.

Last, we compute the modes of the brass plate immersed
in water. The results are shown in Fig. 7. An additional, non-
dispersive mode is obtained, known as the second quasi-
Scholte mode or S-mode.53 The attenuation of leaky modes
is roughly doubled, as expected from perturbation theory.
An exception is the A000-mode in the very low and high fre-
quency range, where it exhibits substantially different atten-
uation values compared to single-sided fluid loading.

VI. CONCLUSIONS

Leaky Lamb waves are modeled by a nonlinear eigenvalue
problem. These are, in general, difficult to solve. However, the
leaky Lamb problem is linearizable by performing a change of
variables. An equivalent polynomial eigenvalue problem of
fourth order was obtained, which is linear in state-space and
can be solved seamlessly by conventional methods. The found
eigenvalues then lead to the corresponding wavenumbers with-
out difficulty.

The main advantage of the presented solution procedure
is that it robustly finds all eigenvalues, including in the
region of coincidence. As the modeled fluid loading is exact,
it is valid for any combination of plate material and fluid.
The method is easy to implement and makes use of common
numerical algorithms. This allows adaptation for custom
requirements, e.g., real time computation of one or more

target wavenumbers by using an appropriate eigenvalue
solver. The technique is not specific to spectral collocation,
but it could in fact be used in combination with most other
discretization methods, including finite elements. The
method could be extended to viscoelastic, anisotropic, inho-
mogeneous, and layered plates. However, in the current
form, it is restricted to plain geometries of infinite extend
because it assumes inhomogeneous plane wave radiation. It
might also not be suitable for modeling radiation into vis-
cous fluids, solid media or when two different fluids are in
contact with the plate.
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APPENDIX: COMPUTATION OF STRAIN AND STRESS

In order to obtain a consistent formulation, stresses and
displacements in the boundary and interface conditions need
to be written in terms of the three degrees of freedom u, W,
and A. The displacements are obtained by inserting the
ansatz for the potentials in Eqs. (3) and (5) into the
Helmholtz decompositions, Eqs. (1) and (2), yielding

ux ¼ ikxuþ i
@W
@y

; (A1a)

uy ¼
@u
@y
þ kxW (A1b)

inside the plate and

ufy ¼ ikyuf ¼ ikyAeikyðy&h=2Þ; (A2a)

for the fluid normal displacements. The non-zero strain com-
ponents are given by

exx ¼
@ux

@x
¼ &k2

xu& kx
@W
@y

; (A3a)

eyy ¼
@uy

@y
¼ @

2u
@y2
þ kx

@W
@y

; (A3b)

exy ¼
1

2

@ux

@y
þ
@uy

@x

& '

¼ i

2
2kx

@u
@y
þ @

2W
@y2
þ k2

xW

 !

: (A3c)

The two relevant stresses are

ryy ¼ kexx þ kþ 2lð Þeyy

¼ &kk2
xuþ kþ 2lð Þ @

2u
@y2
þ 2lkx

@W
@y

; (A4a)

rxy ¼ lexy

¼ il
2

2kx
@u
@y
þ @

2W
@y2
þ k2

xW

 !

: (A4b)

FIG. 7. (Color online) Dispersion diagrams for a 1 mm thick brass plate in
contact on both sides with water: (a) phase velocity cp calculated from Rekx.
The color is proportional to the attenuation Imkx due to radiation losses,
which is plotted explicitly in (b).
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